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The Ocean Aware project, led by Innovasea and funded through Canada’s Ocean

Supercluster, is developing a fish passage observation platform to monitor fish without

the use of traditional tags. This will provide an alternative to standard tracking technology,

such as acoustic telemetry fish tracking, which are often not appropriate for tracking

at-risk fish species protected by legislation. Rather, the observation platform uses a

combination of sensors including acoustic devices, visual and active sonar, and optical

cameras. This will enable more in-depth scientific research and better support regulatory

monitoring of at-risk fish species in fish passages or marine energy sites. Analysis of

this data will require a robust and accurate method to automatically detect fish, count

fish, and classify them by species in real-time using both sonar and optical cameras.

To meet this need, we developed and tested an automated real-time deep learning

framework combining state of the art convolutional neural networks and Kalman filters.

First, we showed that an adaptation of the widely used YOLO machine learning model

can accurately detect and classify eight species of fish from a public high resolution

DIDSON imaging sonar dataset captured from the Ocqueoc River in Michigan, USA.

Although there has been extensive research in the literature identifying particular fish such

as eel vs. non-eel and seal vs. fish, to our knowledge this is the first successful application

of deep learning for classifying multiple fish species with high resolution imaging sonar.

Second, we integrated the Norfair object tracking framework to track and count fish using

a public video dataset captured by optical cameras from the Wells Dam fish ladder on the

Columbia River in Washington State, USA. Our results demonstrate that deep learning

models can indeed be used to detect, classify species, and track fish using both high

resolution imaging sonar and underwater video from a fish ladder. This work is a first step

toward developing a fully implemented system which can accurately detect, classify and

generate insights about fish in a wide variety of fish passage environments and conditions

with data collected from multiple types of sensors.

Keywords: acoustic sonar, deep learning, DIDSON, fish detection, fish tracking, machine learning, optical

cameras, species classification
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1. INTRODUCTION

Fish are an essential part of marine ecosystems as well as human

culture and industry. Fish are a major component of the diet
of more than 3 billion people in the world (Vianna et al.,
2020). However, pollution, overfishing, and habitat destruction

result in population decrease, extinction, or replacement of
species. Monitoring the frequency and abundance of fish species

is therefore necessary to inform conservation and regulatory
efforts that ensure healthy ecosystems and fish stocks (Blemel
et al., 2019; Hilborn et al., 2020). Moreover, the number
and distribution of different fish species can provide useful

information about ecosystem health and can be used for tracking
environmental change (Rathi et al., 2017). Techniques such as
fish tagging, catch-and-release fishing, and video and image
analysis can determine relative abundance and track population
changes of fish.

Fishermen and researchers commonly use fish tagging to
monitor the growth of different fish populations. For decades,
a variety of marine and freshwater animals have been tagged
externally with electronic tags. For smaller fish species, surgical
implantation of tags is required. However, tagging some species
of fish may be impossible, illegal, or prohibitively expensive.
Endangered fish, for example, cannot be legally tagged because
they are protected from human harm. As a result, this
complicates and restricts scientific research of endangered fish
species, as well as regulatory monitoring of endangered fish
species.

Sonar and video data combined with recent advances in
machine learning (LeCun et al., 2015) provide a potential
alternative to invasive fish tags for monitoring at risk fish.
Many monitoring approaches use hydroacoustic sensors to
detect fish (e.g., Capoccioni et al., 2019) but are limited to
comparing relative biomass over time or detecting large fish
schools due to limited resolution. In addition, relative biomass
approaches require complex filtering to remove noise from
non-fish sources such as tidal entrained air which would
otherwise appear to be large numbers of fish. High resolution
imaging sonar such as Dual-frequency Identification Sonar
(DIDSON) and Adaptive Resolution Imaging Sonar (ARIS),
have lately emerged as a feasible alternative to tagging for
monitoring fish behavior (Moursund et al., 2003; Tušer et al.,
2014; Martignac et al., 2015). In many systems, when a fish
passes an acoustic sensor a camera is turned on and video
recorded to limit power usage and data storage. However,
these videos are typically still manually classified as containing
a fish species of interest by humans (Pengying et al., 2019)
as there are currently no proven automated methods for this
purpose. Visual classification of fishes can also aid in tracking
their movements and revealing patterns and trends in their
behavior, allowing for a more in-depth understanding of the
species (Rathi et al., 2017). However, this remains difficult and
time-consuming (Villon et al., 2018), as well as error-prone,
and requires a trained expert because it is not yet possible to
automatically analyze collected videos (Spampinato et al., 2010)
due to numerous challenges including luminosity variation,
fish camouflage, complex backgrounds, water murkiness, low

resolution, shape deformations of swimming fish, and subtle
variations between some fish species (Jalal et al., 2020). Some
promising results include using machine learning to generate
“daytime” images using a combination of acoustic and video
cameras during the night (Terayama et al., 2019).

There have been many attempts to classify fish by species
using optical cameras, although to our knowledge none have
yet been proved on visual sonar data from DIDSON or ARIS
devices. Many approaches are based on convolutional neural
networks, often with image processing techniques to filter the
initial images (Rathi et al., 2017). Deep learning classification
models require large amounts of labeled training data, that is
images with bounding boxes or regional “masks” drawn around
objects of interest with labels for the object type (e.g., Pike or
Bass). Models trained on large general object datasets such as
ImageNet (Russakovsky et al., 2015) for general classification
tasks can be leveraged through transfer learning, the process of
providing smaller amounts of domain specific labeled training
data, to reduce the amount of data that must be captured and
manually annotated by experts (Ali-Gombe et al., 2017). Large-
scale distributed computing resources and reusable analysis
pipelines are important for training deep learning models (e.g., Li
et al., 2017). Fortunately, the resulting trained models can often
be run in real-time on smaller embedded devices for continuous
monitoring. The YOLO (you only look once) (Redmon et al.,
2016) family of object detection models is designed to process
video in real time and has been shown to reliably detect fish in
noisy, low light, and hazy underwater images (Redmon et al.,
2016; Sung et al., 2017; Jalal et al., 2020). Mask-RCNN (He et al.,
2017) is an alternative model that has also shown promise for
detecting and classifying fish (Tseng and Kuo, 2020). YOLO
models place a “bounding box” around detected objects while
Mask-RCNN and its variants place an arbitrarily shaped region
“mask” on the objects that provides the potential for fine-grained
analysis at the expense of some processing speed.

Methods for tracking fish can be based on covariance
matrices (Spampinato et al., 2012) or by the relative position
over time of detected bounding boxes or masks from models
like YOLO. DeepSORT (Wojke et al., 2017) is one such state of
the art model, adapted from the earlier SORT algorithm (Bewley
et al., 2016). The Hungarian algorithm (Kuhn, 1955) and Kalman
filters (Kuhn, 1955) are applied to track objects by comparing
new positions of YOLO detections to velocity-based predictions
from previous detections. However, this two-step process relies
on accurate detections from the detector model (Bathija and
Sharma, 2019) and performance suffers if the YOLO or other
model is inaccurate. Tracking multiple objects simultaneously
requires multiple such predictions and needs high accuracy to
avoid swapping object labels (“identity switches”) (Wojke et al.,
2017). Some models have been applied to tracking fish (Agarwal
et al., 2016; Held et al., 2016; Ning et al., 2017) but require
a hardcoded distance function for determining image-based
position and velocity that may not be appropriate for some
underwater situations or camera angles. The recent Norfair
Python library for real-time object tracking (Alori et al., 2021)
is a customizable lightweight library that can be integrated with
YOLO or other object detection models and custom distance
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functions. To our knowledge, Norfair has not yet been tested for
tracking fish from underwater video.

To overcome these challenges, we applied deep neural
network algorithms to video data from both cameras and imaging
sonar to develop automated fish detection and classification
techniques. The Ocean Aware project, funded by Canada’s
Ocean Supercluster and led by Innovasea, plans to build, and
commercialize world-class solutions for tracking fish health and
innovative approaches to assessment. The main aim of this
project is to get a clearer understanding of the nature and
movement of fish species in realtime to inform regulation and
mitigation of human impacts on at risk fish. As part of this
Ocean Aware project, our research focuses on acoustic and video
camera data processing techniques that aid in the detection,
classification, and tracking of fish.

We tested the feasibility of using two different deep learning
models, YOLOv3 (Redmon and Farhadi, 2018) and Mask-
RCNN (He et al., 2017), for the automatic detection of fish
and classification of eight species of fish. We tested detection
and classification on a public high resolution DIDSON imaging
sonar dataset captured from the Ocqueoc River in Michigan,
USA (McCann et al., 2018b). Moreover, we applied image
augmentation techniques to optimize classification performance.
We then integrated the Norfair (Alori et al., 2021) tracking
algorithm in combination with YOLOv4 (Bochkovskiy et al.,
2020) to track and count fish. We tested fish tracking on a public
video dataset captured by optical cameras from the Wells Dam
fish ladder on the Columbia River inWashington State, USA (Xu
and Matzner, 2018). Although there has been extensive research
in the literature identifying particular fish such as eel vs. non-
eel and seal vs. fish, to our knowledge this is the first successful
application of deep learning for classifying multiple fish species
with high resolution imaging sonar.

Our contributions include:

• Designing a workflow to label image bounding boxes with the
help of Innovasea employees in preparation for deep learning,

• Applying two deep learning models, YOLOv3 and Mask-
RCNN, for fish detection and species classification,
demonstrating that deep learning models can indeed
detect and correctly classify fish species from high quality
visual acoustic data,

• Applying augmentation techniques to achieve higher
classification accuracy on an unbalanced dataset of eight
different species of fish,

• Integrating the Norfair tracking algorithm with YOLOv4 to
track fish in video data, and

• Optimizing parameters of the Norfair tracker for low frame
rate video.

2. MATERIALS AND METHODS

2.1. Evaluating Machine Learning Models
2.1.1. Evaluating Object Detection and Classification

Tasks
Evaluating machine learning models such as the
YOLOv3 and Mask-RCNN models for fish detection and

FIGURE 1 | Example of fish detection and confidence score.

FIGURE 2 | Overview of intersection over union.

classification requires several different terms and metrics
(Padilla et al., 2020).

These models assign each detection a confidence score
representing the confidence of both the detection and
classification. For example Figure 1 shows a classification of fish
with 91 percent certainty. To avoid spurious low-confidence
detections, one applies a confidence threshold (typically 0.5)
under which detections are ignored.

The bounding box or region mask proposed by a model may
not exactlymatch the boundaries of an object so we need to define
a similarity measure between detection regions. The intersection
over union (IOU) between two detection regions (e.g., a bounding
box or mask) is the area of the intersection divided by the area of
the union of the predicted region and the ground-truth region.
When using object detection methods we set an IOU threshold
such as 0.3, 0.4, or 0.5 to determine if an object has been correctly
detected or not. An overview of IOU is shown in Figure 2.

When evaluating an image frame the proposed bounding
boxes arematched to the ground truth bounding boxes. Correctly
detected objects are called true positives (TP), defined as an object
detected with the given IOU threshold, confidence threshold, and
correct classification. Incorrectly detected objects are called false
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positives (FP), defined as objects detected but below the IOU
threshold or with the wrong classification. Missed detections are
called false negatives (FN), defined as objects with no predicted
bounding box or a detection below the confidence threshold.
There may be multiple or no objects in each image frame so the
concept of true negatives is not typically used to evaluate multiple
object detection and classification.

Precision (Equation 1) is the number of true positives divided
by the sum of true positives and false positives. Detections
in precise models are likely to be correct detections. Recall
(Equation 2) is the number of true positives divided by the sum
of true positives and false negatives. Models with high recall tend
to find most objects.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

There is a trade-off between these two concepts. Detections
are likely to be correct from precise models at the expense
of potentially missing low confidence detections. On the other
hand, models with high recall tend to find most objects but may
have a large number of false positives. Precision and recall may
be analyzed using a precision-recall graph, with various model
parameters resulting in different balances, but this can be difficult
to optimize.

To optimize detection and classification models, a single
metric, the average precision (AP) (Equation 3), balances both
precision and recall and is based on calculating the area under a
precision-recall curve. We order the ground truth objects by IOU
and take a weighted sum of precision at each recall threshold with
a weight based on the increase in recall. To put this another way,
the average precision is the weighted sum of the precision values
for the most precise detection, the two most precise detections,
the three most precise detections and so on. Finally, the mean
average precision (mAP) (Equation 4) is the mean of the average
precision values over each classification type. Note that, despite
the name, mean average precision measures both precision and
recall and is the standard metric for evaluating object detection
and classification models.

AP =

K=n−1∑

k=0

[recall(k)− recall(k+ 1)] ∗ precision(k) (3)

where n is the number of ground truth objects.

mAP =
1

j

j∑

i=1

APi (4)

withAPi being the average precision of the ith class and j the total
number of classes being evaluated.

2.1.2. Evaluating Object Tracking
To evaluate the effectiveness of object tracking we need to
additionally consider the duration of tracking, cases of mistaken

identity and the frequency of tracking interruptions.We applied a
set of criteria standardized in the CVPR19 challenge (Dendorfer
et al., 2019), which are based on the CLEAR metrics proposed
by Stiefelhagen et al. (2006) and track quality measures
introduced by Wu and Nevatia (2006).

An object is considered mostly tracked (MT) if successfully
tracked for at least 80% of frames where the object appears. An
object tracked in less than 80% but at least 20% of frames is
considered partially tracked (MT). Objects tracked in less than
20% of frames are calledmostly lost (ML).

Identity switching (IDSW) refers to the number of times a
tracked trajectory changes its matched ground-truth identity.
This can occur when multiple objects are near each other
and quickly change trajectories. Frequent identity switching can
complicate analysis even when objects are mostly tracked.

The number of times a ground truth trajectory is interrupted
is known as fragmentation. In other words, fragmentation is
counted every time a trajectory status shifts from tracked
to untracked, and then tracking is resumed at a later time.
Fragmented detections can be unreliable.

The most widely used metric for evaluating object tracking
is the multiple object tracking accuracy (MOTA). This metric
considers three types of errors: false positives, missed targets, and
identity switches. The formula for calculating MOTA is shown in
Equation (5).

MOTAt = 1−

∑
t(FNt + FPt + IDSWt)∑

t GTt
(5)

where IDSWt is the identity switches, respectively, for time t, GTt

is the number of ground truth objects, FNt is the number of false
negatives (missed targets), and FPt the number of false positives.

2.2. Datasets
2.2.1. Dataset for Fish Detection and Classification
To evaluate our two models for fish detection and classification
we used a dataset of DIDSON high resolution visual acoustic
video captured from the Ocqueoc River in Michigan,
USA (McCann et al., 2018b). The data in this dataset are
stored in two formats: a raw acoustic format as collected from
the DIDSON device and a binary format that contains images
of the visualized acoustic data. We used the raw data in our
analysis. Each raw video file is 30 min in duration, with 105
raw DIDSON files from 2013 and 95 from 2016. In total there
are approximately 100 h of video. We extracted 524 clips with
known species targets. Table 1 summarizes the number of videos
for each species in this dataset. Note that the species distribution
of this data is very unbalanced with up to 190 videos of the most
frequent species, Lamprey, but only one video of Largemouth
bass.

The Ocqueoc dataset is annotated by fisheries experts
and includes spreadsheets with textual information about the
position, frames, and trajectories of the identified fish species.
Much of this dataset was gathered over twomonths in 2016 with a
DIDSON visual sonar camera as well as two optical video cameras
positioned to overlap the DIDSON field of view. The optical
camera data was manually inspected and observed fish were
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TABLE 1 | Number of videos and extracted images of each species in the

Ocqueoc River DIDSON dataset.

Species Number of videos Number of extracted

images

Carp 51 7,953

Lamprey 190 6,986

Largemouth bass (Lmbass) 1 160

Pike 2 350

Smallmouth-bass (Smbass) 65 11,690

Steelhead 6 582

Sucker 100 21,676

Walleye 109 11,973

FIGURE 3 | Sample image frame captured from DIDSON visual sonar with a

fish in view roughly 6 m from the camera.

cross-referenced with DIDSON data to create short videos of 5 to
20 s containing the known target. The combination of optical and
sonar cameras provides high confidence species classifications on
DIDSON videos.

2.2.1.1. Image Extraction
Object detection and classification models require precise labeled
bounding boxes or masks which this dataset does not include.
To match the requirements of our deep learning models, we
converted the video files to sets of labeled images.

The raw acoustic DIDSON videos are stored in a proprietary
“DDF” format. We used the DIDSON-V5 software provided by
Sound Metrics to convert the DDF format files to standard AVI
video files. Most videos from this dataset use a frame rate of 7
frames per second but some had lower frame rates. We extracted
standardized image frames at 4 frames per second from the
videos. The videos and images are annotated with the distance
in meters from the DIDSON acoustic camera (see Figure 3).

2.2.1.2. Image Labeling
Training deep learning algorithms requires that, we have
bounding boxes or masks that indicate the ground truth location
of the objects we wish to detect. The Ocqueoc River DIDSON
dataset was not annotated with bounding boxes so we used the
LabelImg tool (Tzutalin, 2015) to draw bounding boxes around a
subset of the images in the dataset in the YOLO format needed
to train YOLO models. We prepared a small subset of labeled
images for reference and then three Innovasea employees labeled
a larger subset of images. Labeling images is time consuming
and this step required 72 h of total labeling time. Labeling the
entire dataset would take hundreds of hours. Creating custom
masks would be even more labor-intensive so we reused the
bounding boxes for evaluatingMask-RCNN as well by converting
the YOLO format labels to the Pascal-VOC format.

One concern when training a machine learning model is
“overfitting,” that is, training the model to memorize the training
set rather than learning how to complete the specified task.
To reduce the potential for overfitting while also generating a
representative subset with different fish and conditions from
this large dataset, images were only labeled every few frames
(subsetting the extracted frames). This is to reduce the potential
that two nearly identical images will appear in both the training
and test sets.

2.2.1.3. Train and Test Sets
Following the completion of the pre-processing steps, the images
containing fish have text files generated while labeling. However,
there were no text files for the images that do not contain any
fish. We wrote a Python script to create text files for these types
of images.

After creating text files, all of these images are organized into
folders based on the species. A Python script was written to
extract 80% of the images randomly as the train set and 20%
as the test set randomly, and then shuffled their order in these
sets to reduce training bias. Table 2 shows an overview of the
count of each species included in the train and test sets, which
is taken into account for both the YOLOv3 and Mask-RCNN
models. We also note the percentage of image frames for each
species that do contain images of the fish. Note that the species
distributions are very unbalanced in this dataset, ranging from
only 160 total images associated with Largemouth Bass to 2741
images associated with Lamprey, which were a focus of the study
that collected this data. The species distributions are somewhat
similar but not exactly the same as those from the raw video data,
depending on the number of videos that were labeled and the
number of frames skipped by the image labelers. In addition, the
percentage of images associated with each species that actually
contained fish varied from 25% (Largemouth Bass) to 86.4%
(Sucker) in the training set. This distribution was roughly similar
in the test set. Variation in the number of fish species, biased
sampling, and biased annotation can all impact the ability of a
trained machine learning model to classify different species.

2.2.2. Dataset for Fish Tracking
To evaluate fish tracking with Norfair we used a public dataset of
optical cameras from theWells Dam fish ladder on the Columbia
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TABLE 2 | Overview of train and test sets for training and evaluating YOLOv3 and Mask-RCNN, including the number of images for each species overall, in the training

set and testing set as well as the percentage of the training and testing set images associated with those species that do contain fish.

Species Total number of

images

Total Number of

train images

Number of positive

samples in train set

Number of test

images

Number of positive

samples in test set

Lamprey 2,741 2,193 36.6% 548 34.4%

Smbass 1,425 1,140 70.0% 285 72.9%

Carp 1,235 988 64.2% 247 64.8%

Sucker 1,155 924 86.4% 231 86.1%

Steelhead 582 465 44.3% 116 45.6%

Walleye 573 450 71.3% 114 72.8%

Pike 350 280 46.7% 70 50.0%

Lmbass 160 128 25.0% 32 21.8%

Species are sorted by the number of labeled images in descending order.

River in eastern Washington state, USA (Xu and Matzner, 2018).
Fish were recorded through a fish passage viewing window in the
Wells Dam. These videos include Chinook, Jack Chinook, and
Sockeye species. The frame rate was exactly 30 frames per second,
and the video image size was exactly 1280 × 960 pixels. A total
of 24,000 frames are available, with 13,405 of them containing
fish. Images in this dataset are well labeled and no additional
pre-processing of this data was required.

2.2.2.1. Train and Test Set
Our main goal when testing Norfair was to evaluate performance
with various types of camera data recorded at various frame
rates. This evaluation can help inform hardware choices and
instrumentation decisions for data collection at other fish passage
sites. We first split the 24,000 frames of video in the Wells Dam
Camera dataset into 19,200 images for training and 4800 images
for testing by randomly selecting videos to have no overlap of
videos between the train and test sets.

We applied YOLOv4 and Norfair on down-sampled videos
with varied frame rates per second, namely 20, 10, and 5
fps, to understand the impact of frame rate on fish tracking
performance. For this evaluation, we down-sampled the training
videos to 20 frames per second using a Python script, yielding
12,800 images (tracking training set 1). We then subsampled half
of these images, yielding the equivalent of 6,400 images from 10
fps video (tracking training set 2). Finally, we subsampled again
to obtain 3,200 images equivalent to 5 fps video (tracking training
set 3).

We similarly downsampled and subsampled the test videos,
resulting in three test sets with 3,200 frames of 20 fps video, 1,600
frames of 10 fps video, and 800 images of 5 fps video.

2.3. Machine Learning Models
2.3.1. YOLOv3 Detection and Classification Model
The YOLO (you only look once) family of object detection
and classification models are effective models optimized for fast
detections suitable for real time detection on embedded devices.
We will summarize some of the features and architecture of
the YOLOv3 model but see (Redmon and Farhadi, 2018) for
the full details of the model. Standardized implementations and

source code for YOLOv3 in the Python programming language
are provided on GitHub by its creator.

The YOLOv3 architecture consists of a feature extractor and
detector. The feature extractor is a 53 layer convolutional neural
network calledDarknet-53 which extracts features from images at
three different scales suitable for large, medium and small objects
relative to the image size. These features are provided to the
detector network which predicts confidence values for more than
20,000 possible bounding boxes of various sizes. An algorithm
called non-max suppression is applied to identify the best (if any)
non-overlapping candidate object detections.

2.3.2. Mask-RCNN Detection and Classification

Model
The RCNN (region-based convolutional neural network) family
of object detection and classification models are an alternative
architecture that can detect more general object masks than
simple bounding boxes. Mask-RCNN (He et al., 2017) is the
RCNN family’s fourth model and an update to the previous
Faster-RCNNmodel (Ren et al., 2015).

Mask-RCNN is divided into two stages, a backbone stage and
head stage. The backbone stage uses a combination of a feature
pyramid network (Lin et al., 2017) and ResNet-101 (He et al.,
2016) as well as a region proposal network (Ren et al., 2015)
and ROI (Region of interest) (Girshick, 2015) alignment layer
for proposing regions which contains objects. The ResNet101
feature pyramid network extracts features from the raw image,
analogous to the DarkNet stage of YOLOv3. Then the region
proposal network applies a sliding window to these features
to propose bounding box regions that may contain images.
The head stage contains fully connected neural network layers
which apply classification, bounding box prediction and mask
prediction using the proposed object regions from the first stage.

As with YOLOv3, a standard implementation of Mask-RCNN
and source code are provided by the authors in the Python
programming language.

2.3.3. YOLOv4 Object Detection and Classification

Model
As we discussed above, YOLOv3 contains mainly two
components, a backbone feature extractor based on darknet53
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and detection blocks which are used for bounding box
localization and classification. YOLOv4 (Bochkovskiy et al.,
2020) adds additional components for more accurate bounding
box detection. It has three main stages, a feature extractor known
as CSP (Cross-Stage-Partial-Connections) Darknet53 (Wang
et al., 2020), a neck that connects the backbone to the head with
a spatial pyramid pooling additional module (SPP) (He et al.,
2015) and PANet path-aggregation-network (Liu et al., 2018),
and a head that is identical to YOLOv3.

Reference implementations of YOLOv4 were not yet available
when we completed the first part of this work comparing
YOLOv3 to Mask-RCNN. We thus evaluated the recently
released YOLOv4 only for fish tracking with Norfair.

2.4. Norfair Object Tracking Library
For fish tracking, we used the Norfair tracking library (Alori
et al., 2021) in combination with YOLOv4 (Bochkovskiy et al.,
2020). Norfair is a lightweight Python library for real-time
object tracking that can be customized. Norfair is designed to
add tracking capabilities to any object detection model using
a few lines of code. Multiple new object detection models are
introduced each year, as evident by the introduction of YOLOv4
during this research, so we sought a tracking method that can be
applied to newer models.

For Norfair to operate, one must provide input in the form of
detections made by the detector; in our case, YOLOv4 is used as
the detector, which first makes detections on the images or videos
and then passes those detections per frame to Norfair for object
tracking.

Norfair operates by predicting each point’s future location
based on its previous positions and estimated velocity using a
Kalman Filter. It attempts to align the previous set of locations
with the detector’s newly observed points using Euclidian
distance or an arbitrary user-supplied distance function.

Norfair does not require training but has a number of
customizable parameters that may need to be optimized for
different use cases. The distance_function is the function used
for calculating the distance between newly observed objects
and previous detections. The distance_threshold defines the
maximum distance at which a match will occur. The tracker can
not fit detections or tracked items that are further away than this
threshold. The tracking library maintains an initeria counter that
tracks how frequently a given detection is matched to an object.
The inertia counter increases with each match and decreases
when there is no match. If the interia counter decreases below
hit_inertia_min (default 10) then the object is no longer tracked.
The inertia counter does not increase beyond hit_inertia_max

(default 25) to maintain rapid responses to the disappearance of
long duration tracked objects.

One final parameter is of particular interest for operating
with low frame rate video. To avoid spurious detections,
potential objects are followed until they have been observed for
initialization_delay frames. If this parameter is too small then
spurious detections will be recorded. If too large then short
duration detections will be ignored.

Source code for Norfair is provided by Tryolabs in the Python
programming language.

2.5. Training the Models
2.5.1. Training the YOLOv3 Model
We used convolution weights that have been pre-trained on the
ImageNet (Russakovsky et al., 2015) dataset for training. The
model was pre-trained on a large dataset with 80 different object
classes. Applying a pre-trained model to a dataset with a different
format (e.g., image dimensions, number of classification classes,
etc.) requires modifying some parameters in the yolov3.config
configuration file (pjreddie, 2018). yolov3.config is the file where
YOLOv3 model network architecture parameters are stored.

The first change we made in the yolov3.config file was
specifying the number of classes for classification which is 8 in
our case. The batch value, which indicates how many images
and labels are used in the forward pass to compute a gradient
and update the weights via backpropagation, was set to 64. This
batch value was selected according to the capacity of the NVIDIA
Tesla V100 graphics processing unit (GPU) we used for training.
The Subdivision parameter indicates that the batch should be
divided again into blocks of images, which we set to 16. Thewidth
and height parameters, which indicate that every image will be
resized to fit the network size during training and testing, are set
to 608,608 which is a recommended network size for accurate
detection and classification (Redmon and Farhadi, 2018).
Max_batches parameters are set to (numberofclasses)× 2000,
since we have 8 classes in our dataset, this was 16,000. The steps
parameter should be set to 80 and 90 percent of Max_batches,
so in our case, it was 12,800,14,400. The filter parameter
indicates the number of output feature maps and is calculated as
(classes+ 5)× 3, which in our case is 39.

After the dataset and configuration file were prepared, we
applied Google Colab Pro for training, using an NVIDIA Tesla
V100 GPU compute processor with 16GB of RAM. The model
was trained for 2,000 epochs, taking approximately 8 h.

2.5.2. Training the Mask-RCNN Model
We used convolution weights that have been pre-trained on
the MS-COCO (Microsoft Common Objects in Context) (Lin
et al., 2014) dataset for training. The model was pre-trained on
a large dataset with about 80 different object classes, but to use
it for our purposes, we need to change some parameters in the
mask_rcnn.config file (cclauss, 2019).

We first set the parameter Images_per_GPU which was
set to 4 based on the memory size of our GPU. The
Number_of_classes parameter was set to 9 as we have 8 classes
of objects in our dataset and need 1 additional class for
the background. The backbone network architecture parameter
was set to ResNet-101, which is the Convolutional Network
architecture we utilized in the first step of Mask-RCNN. This
can be chosen as either ResNet-50 or ResNet-101. We selected
the larger model because it produces the best mAP when
combined with Mask-RCNN according to He et al. (2017).
Image_Min_Dim and Image_Max_Dim were set to 608,608.

After the dataset and configuration file were prepared, we
applied Google Colab Pro for training, using an NVIDIA
Tesla V100 GPU compute processor with 16GB of RAM. The
model was trained for 2,000 epochs, as with YOLOv3, taking
approximately 2 days.
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2.5.3. Training the YOLOv4 Model (Fish Tracking)
We used convolution weights that have been pre-trained on the
ImageNet dataset for training. The pretrained model was trained
on a large dataset that contains about 80 classes of objects, but in
order to use it for our purposes of tracking fish with Norfair, we
need to change some settings in the yolov4.config configuration
file (pjreddie, 2018).

The first adjustment to the yolov4.config file was the number
of classes, which we set to 1 for fish tracking. In contrast to our
detection and classification tests, here we only need the detector
to classify objects as fish or not fish. The batch value, indicating
how many images and labels are used in the forward pass to
compute a gradient and update the weights via backpropagation,
was set to 64 which was selected according to the capacity of
the NVIDIA Tesla V100-GPU used for training. The subdivision
parameter indicates that the batch should be divided again into
blocks of images, and was set to 16. The width and height
parameters, which indicate that every image will be resized
to fit the network size during training and testing, were set
to 608,608 as this is the best network size for obtaining best
accuracy using YOLOv4 according to Bochkovskiy et al. (2020).
Max_batches paramaters should be (numberofclasses)× 2000, so
since we have 1 class in our dataset, it was set to 2000. The
steps parameter should be set to 80 and 90 percent of the max
batches, so in our case, we used 1600,1800. The filter parameter
indicates the number of output feature maps and is calculated as
(classes+ 5)× 3, which in our case was 18.

Along with these settings, we applied data augmentation
parameters such as hue, saturation, exposure, and random
rotation, as discussed below. After the dataset and configuration
file were prepared, we applied Google Colab Pro to train the
model using an NVIDIA Tesla V100-GPU computing processor
with 16GB of RAM. The training was conducted for 1,000 epochs
after which we saved the generated model weights for testing.
This took approximately 4 h.

3. RESULTS

3.1. Fish Detection and Classification
We applied the two selected deep learning models YOLOv3 and
Mask-RCNN for fish detection and classification to the Ocqueoc
River DIDSON dataset. The initial results were encouraging but
not sufficient for use, as is typical when applying general machine
learning models to a new domain. We examined a moderate
subset of the input images and fish from the test set which were
not detected or were misclassified by our initial trained models,
grouping them into the categories clearly visible, partially visible,
and edge objects. We then applied data augmentation techniques
to artificially increase the size of our dataset and enable the
models to better handle detecting and classifying the fish which
were not clearly visible.

3.1.1. Initial Results of YOLOv3
We evaluated the mean average precision (mAP) of YOLOv3 on
the DIDSON visual acoustic data with IOU thresholds of 0.4 and
0.5. At an IOU threshold of 0.5 the model achieved an mAP of
0.29. With a less strict detection criteria, an IOU threshold of 0.4,

the model achieved an mAP of 0.41. This mAP increase suggests
that the model may be detecting the general vicinity of the fish
but is not finding their position accurately.

We also examined individual performance of YOLOv3 on
each species in the dataset (Table 3). This analysis includes the
number of true and false positives as well as the average precision
for each species with IOU detection thresholds of 0.4 and 0.5.
In general, we observed the worst performance in species with
the least training samples (Largemouth Bass IOU = 0.4,AP = 0,
160 images and Steelhead IOU = 0.4,AP = 0.28, 582 images).
However, the model performed poorly on some species with a
large number of training samples (Lamprey IOU = 0.4,AP = 0.36,
2,741 images) and the model performed well on some species
with a small number of training samples (Walleye IOU = 0.4, AP
= 0.7, 573 images). Fish shape as well as the relative number of
training images which actually contain fish (e.g., Lamprey with
only a 36.6% rate of positive samples) may be contributing factors
to these results.

3.1.2. Initial Results of Mask-RCNN
We also evaluated the mean average precision (mAP) of Mask-
RCNN on the DIDSON visual acoustic data with IOU thresholds
of 0.4 and 0.5. At an IOU threshold of 0.5 the model achieved an
mAP of 0.18. The mAP with an IOU threshold of 0.4 was 0.32. As
with YOLOv3, This mAP increase suggests that the model may
be detecting the general vicinity of the fish but is not finding their
position accurately. Moreover, Mask-RCNN performed worse
than YOLOv3 on average for this dataset.

We also examined individual performance of Mask-RCNN on
each species in the dataset (Table 4). This analysis includes the
number of true and false positives as well as the average precision
for each species with IOU detection thresholds of 0.4 and 0.5. We
saw similar patterns as with YOLOv3, namely that species with
few samples were difficult to detect and classify. Mask-RCNN
performed slightly better than YOLOv3 with some species,
including Carp, Largemouth Bass, and Pike. However, Mask-
RCNN performed the same or worse as YOLOv3 at detecting and
classifying most of the species, particularly Lamprey (AP = 0.06).

TABLE 3 | Results of the YOLOv3 model on each species in the Ocqueoc River

DIDSON dataset with IOU thresholds of 0.4 and 0.5.

Species TP FP AP TP FP AP

IOU = 0.5 IOU = 0.4

Lamprey 30 37 0.16 44 23 0.36

Smbass 63 13 0.42 69 7 0.50

Carp 81 100 0.30 108 73 0.54

Sucker 73 40 0.36 81 32 0.47

Steelhead 12 12 0.24 9 15 0.28

Walleye 44 3 0.66 45 2 0.70

Pike 9 13 0.17 15 7 0.42

Lmbass 0 0 0.00 0 0 0.00

Species are sorted by the number of labeled images in descending order.
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TABLE 4 | Results of the Mask-RCNN model on each species in the Ocqueoc

River DIDSON dataset with IOU thresholds of 0.4 and 0.5.

Species TP FP AP TP FP AP

IOU = 0.5 IOU = 0.4

Lamprey 5 58 0.01 7 56 0.06

Smbass 106 100 0.24 127 79 0.38

Carp 114 116 0.38 142 88 0.57

Sucker 142 214 0.17 180 177 0.30

Steelhead 9 52 0.07 13 48 0.19

Walleye 55 26 0.24 60 21 0.35

Pike 15 30 0.31 18 27 0.47

Lmbass 1 7 0.00 2 4 0.25

Species are sorted by the number of labeled images in descending order.

FIGURE 4 | Example image where the fish is clearly visible from DIDSON

visual sonar.

3.1.3. Evaluation of Difficult Cases
The initial overall performance of both YOLOv3 and MASK-
RCNNmodels on our dataset was not particularly impressive. To
understand this failure, we randomly selected 1,000 images from
the test set to evaluate more closely. Our initial trained YOLOv3
and Mask-RCNN models were tested on these 1,000 images
with an IOU threshold of 0.5. The 804 images which contained
objects not detected at an IOU threshold of 0.5 were then run
with IOU thresholds 0.1, 0.2, 0.3, and 0.4. Upon examination
we categorized these images into three categories, that is,
containing fish that were clearly visible (Figure 4), edge objects
(Figure 5), or partially visible (Figure 6). In total there were 58
clearly visible images, 702 partially visible images, and 44 edge
object images.

FIGURE 5 | Example image where the fish is at the edge of the DIDSON visual

sonar image.

FIGURE 6 | Example image where the fish is partially visible.

We observed that most failures were a result of partially visible
objects. With partial visibility, the machine learning models often
detected the fish at low IOU values with bounding boxes near but
very different dimensions than our labeled ground truth boxes
(Figure 7).
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FIGURE 7 | Example image where a partially visible fish is detected with an

IOU of 0.3, below the threshold. The green box indicates the labeled ground

truth and the red box indicates the bounding box predicted by YOLOv3.

3.1.4. Image Augmentation
At this stage, we hypothesized that our models were suffering
from a combination of insufficient training examples and
partially visible training examples. One of the best techniques
for improving model performance in these conditions is to
apply image augmentation techniques. Image augmentation
modifies the test set images in various ways, generating
additional training examples. The specific image augmentation
techniques chosen can help the models better generalize
and handle challenging conditions. We selected image-based
transformations to help teach the model to identify fish at
different orientations and in darker regions of the visual sonar-
based images. Modern machine learning models like YOLOv3
and Mask-RCNN can integrate several different common
augmentations which must be selected based on the dataset.
Selecting inappropriate augmentations can increase training time
and even reduce accuracy.

In particular, we applied saturation, contrast, hue, and
rotation augmentations. Every augmentation was applied during
training to each training image with random variation based the
following parameters. The number of training samples per epoch
was the same without and with augmentation.

Saturation modifies the color intensity. Larger values
apply greater variance. We used a saturation range of [0
to 1.5], which is applied randomly to images when training
the model.

Exposure determines the amount of black or white that is
added to colors. The higher the value, the greater the variance,
possibly making it appear as if the images were over-or under-
exposed. We applied an exposure range of [0 to 1.5].

Hue Hue can be thought of as the “shade” of the colors
in an image. We applied a Hue range of [0 to 0.5]. The Hue
augmentation changes the color channels of an input image at
random, causing a model to explore several color schemes for
objects and scenes in the image. This strategy is important for
ensuring that a model does not memorize the colors of a given
object or scene.

Random Rotation changes the angle of objects present in the
images. Objects can be skewed in either direction. We applied
a rotation range of [–90 to 90 degrees]. Rotation augmentations
may help the models learn to detect fish at different angles or
partially visible and may also reduce reliance on the boundary
shape of the DIDSON images.

Note that although DIDSON images are a representation
of sensor return values and, therefore, do not contain color
information naturally, the images as presented to YOLOv3 and
Mask-RCNN are color images and the models benefit from
additional modified training examples which enable them to
learn to use more robust information from the images.

3.1.5. Final Results of YOLOv3
Applying image augmentation during training greatly improved
the results of YOLOv3 on the Ocqueoc River DIDSON dataset.
The results with an IOU threshold of 0.5 improved from 0.29
mAP to 0.59 mAP. The results with an IOU threshold of 0.4
improved from 0.41 mAP to 0.73 mAP.

The per-species detection and classification results were
similarly improved (Table 5). We can see that YOLOv3 had a
higher average precision on Walleye with an IOU threshold
of 0.5, yet achieved a higher average precision for Smallmouth
bass with an IOU threshold of 0.4, demonstrating that model
detection performance varies with IOU. We also observe that
the number of false positive values for each species is higher
for an IOU threshold of 0.5 than for 0.4, demonstrating that
the YOLOv3 model prediction of bounding box changes as the
IOU value increases. Most encouraging was that the average
precision on Largemouth Bass increased from 0 to 0.56 with an
IOU threshold of 0.5, demonstrating that increasing the number
of training images allows us to detect and classify some species of
fish even with few training samples.

3.1.6. Final Results of Mask-RCNN
Applying image augmentation during training also improved the
results of MASK-RCNN on the Ocqueoc River DIDSON dataset.
The results with an IOU threshold of 0.5 improved from 0.18
mAP to 0.54 mAP. The results with an IOU threshold of 0.4
improved from 0.32 mAP to 0.62 mAP.

As with YOLOV3, the per-species detection and classification
results with MASK-RCNN were greatly improved (Table 6).

3.1.7. Fish Detection and Classification Results
The highest mAP achieved by YOLOv3 and Mask-RCNN was
0.73 and 0.62, respectively. These results demonstrate that it is
feasible to detect and classify fish species using visual acoustic
data from high resolution acoustic cameras like the DIDSON
devices deployed on the Ocqueoc River. YOLOv3 achieved a
higher mAP in our dataset and with our chosen parameters,
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TABLE 5 | Results of the YOLOv3 model with image augmentation on each

species in the Ocqueoc River DIDSON dataset with IOU thresholds of 0.4 and 0.5.

Species TP FP AP TP FP AP

IOU = 0.5 IOU = 0.4

Lamprey 72 43 0.42 91 24 0.62

Smbass 168 41 0.82 184 25 0.91

Carp 174 35 0.78 187 22 0.90

Sucker 241 112 0.66 301 52 0.88

Steelhead 21 13 0.39 26 8 0.57

Walleye 67 21 0.86 70 18 0.91

Pike 15 15 0.31 21 9 0.54

Lmbass 4 1 0.56 4 1 0.56

Species are sorted by the number of labeled images in descending order.

TABLE 6 | Results of the MASK-RCNN model with image augmentation on each

species in the Ocqueoc River DIDSON dataset with IOU thresholds of 0.4 and 0.5.

Species TP FP AP TP FP AP

IOU = 0.5 IOU = 0.4

Lamprey 14 49 0.22 19 44 0.30

Smbass 145 60 0.68 153 55 0.70

Carp 171 59 0.73 191 41 0.80

Sucker 241 122 0.64 267 104 0.69

Steelhead 19 43 0.30 26 37 0.39

Walleye 69 10 0.82 73 7 0.85

Pike 21 23 0.45 21 23 0.45

Lmbass 4 3 0.44 6 1 0.66

Species are sorted by the number of labeled images in descending order.

suggesting that YOLO models may perform better on this task.
As a result, we focused on the newly introduced YOLOv4 for
our later tests on fish tracking with Norfair. In addition, the
processing rate of video frames was faster with YOLOv3 (24 fps)
than with Mask-RCNN (8 fps).

We also observed that these detection and classification
models can achieve good average precision on species when
supplied with ample training examples such as in this dataset with
Carp, Smallmouth Bass and Walleye when compared to species
with fewer images such as Largemouth Bass, Pike, and Steelhead.
Sufficient training examples will need to be collected to use these
models on rare fish, although image augmentation techniques
can reduce the number of training examples needed.

4. FISH TRACKING

We combined YOLOv4 with Norfair for fish tracking. We
trained three different YOLOv4 models, one on each of our
subsampled training sets designed to mimic video at 20, 10, and
5 fps. We evaluated the performance of fish tracking (Table 7)
including the overall duration of tracking, number of false
positives and negatives, ID switches, fragmentation and multiple
object tracking accuracy. Note that these results report tracking

TABLE 7 | Norfair fish tracking results on video with 5, 10, and 20 fps, using

initialization delays ranging from 6–17.

Initialization

delay

Frame rate

(fps)

GT MT PT ML FP FN IDs FM MOTA

17 20 1 1 0 0 44 103 96 42 54.7%

17 10 1 0 1 0 43 78 33 33 42.8%

17 5 1 0 1 0 40 63 7 17 18.5%

14 20 1 1 0 0 40 52 111 31 62.2%

14 10 1 0 1 0 32 64 38 30 50.2%

14 5 1 0 1 0 34 44 14 20 31.9%

11 20 1 1 0 0 25 28 125 20 66.9%

11 10 1 1 0 0 13 17 61 12 66.2%

11 5 1 1 0 0 10 14 27 8 62.2%

8 20 1 1 0 0 36 52 111 31 62.9%

8 10 1 0 1 0 26 64 38 30 52.4%

8 5 1 0 1 0 30 44 14 20 34.8%

6 20 1 1 0 0 46 84 99 42 57.4%

6 10 1 0 1 0 38 74 34 32 45.7%

6 5 1 0 1 0 37 57 10 19 23.0%

From left to right the metrics evaluated were the ground truth number of classes (GT),

the count of classes mostly tracked (MT), partly tracked (PT), and mostly lost (ML), the

number of false positives (FP), false negatives (FN), ID switches (IDs), fragmentation (FM),

and multiple object tracking accuracy (MOTA). The best metrics for 5, 10, and 20 fps are

bolded.

duration for each detected class and, thus, for all fish combined
in this dataset.

In general, fish were more difficult to track on the low frame
rate data as evidence by the low MOTA values. Note that the low
frame rate data naturally contains 1/4 of the frames of video and
so has relatively high levels of false positives, false negatives and
fragmentation. As such, one must be careful when comparing
fish tracking performance between videos with different
frame rates.

The greatest MOTA attained by Norfair was 66.9% for 20 fps
videos, 66.2% for 10 fps videos, and 62.2% for 5 fps videos, all at
an initialization delay of 11. In general the best performance on
all metrics except ID switches was obtained with an initialization
delay of 11. The lower rate of ID switches at very small and
very large initialization delays is likely caused by the large
number of false positives at those initialization delays, suggesting
that this metric needs to be considered with the context of
other metrics.

Figure 8 shows a comparison of MOTA of Norfair at various
frame rates. TheMOTA of Norfair was highest at an initialization
delay of 11, and as the initialization delay is reduced, the MOTA
value decreases. MOTA values decline as fps decreases and, for
all values of initialization delay, the highest MOTA is achieved
for videos of 20 fps and the lowest with videos of 5 fps. We can
conclude from these results that Norfair tracks fish relatively well
on videos with high frame rates but poorly on low frame rate
video with the default initialization delay settings of 17. Tuning
the initialization delay parameter allows Norfair to also track fish
in low frame rate video with similar performance to high frame
rate video.
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FIGURE 8 | Comparison of MOTA of Norfair at different Intialization_delay values.

5. DISCUSSION

The main aim of this research was to evaluate the performance of

state of the art deep learning models on visual acoustic data and
video camera data for detection, classification, and tracking fish.
We first tested the feasibility of using deep learning for detection

and classification on eight distinct species of fish captured
by a high-resolution DIDSON imaging sonar in the Ocqueoc
River. The dataset contains metadata observations indicating

which videos and frames contained fish, their species, and text
descriptions of their approximate location which were later
converted into images for performing detection and classification
tasks using YOLOv3 and Mask-RCNN models. To evaluate fish
tracking, we used a dataset containing underwater optical videos
recorded from the Wells Dam fish ladder on the Columbia River
in Washington State, USA. This dataset contains images of fish
which were input to a YOLOv4 model for integration with the
Norfair algorithm for performing fish tracking.

The maximum mean average precision achieved by YOLOv3
for fish classification and detection was 0.73 with an IOU
threshold of 0.4. In contrast, Mask-RCNN achieved 0.62 mAP
at this IOU threshold. In general, our results show that we can
indeed detect and classify fish by species using DIDSON imaging
sonar with these deep learning models. YOLOv3 achieved a
higher mAP when compared to Mask-RCNN, as well as higher
AP for individual species, suggesting that YOLOv3 may be
a better model to deploy for real-time fish detection and
classification when using acoustic data. Moreover, YOLOv3 was
faster in terms of processing image frames per second with a
rate of 24 fps in comparison to the 8 fps of Mask-RCNN. As
such, YOLO family models are recommended for deployment on
embedded devices requiring real-time processing.

Infrequently sampled fish were difficult to classify so we
recommend having at least 400 training examples for each species
of fish to obtain accurate species classifications. More training
instances may be needed if attempting to classify very similar
species of fish or much larger sets of species than the eight

we classified here. Image augmentation techniques including
saturation, exposure, hue, and random rotation were needed to
achieve reasonable average precision values on visual acoustic
data and with unbalanced species distributions. In general,
an evaluation of difficult classification cases and optimization
techniques like image augmentation are needed to achieve
useful performance when attempting to apply a general purpose
machine learning model to a new domain or type of data.

After evaluating models for detecting and classifying fish
species, we briefly investigated the task of tracking and counting
fish. For this purpose, we integrated the recently released
YOLOv4 model with the Norfair tracking library. Different
deployments often use different video equipment or settings
to save money, power and storage. In particular, organizations
may have large historical collections of low frame rate video
captured from older equipment that requires automated analysis.
As such we downsampled videos of fish to obtain equivalent
videos at different frame rates. We explored varying the Norfair
initialization delay parameter, which controls the number of
detections of an object required to begin tracking, as a method
to optimize tracking performance on low frame rate video.
The greatest MOTA attained by Norfair was 66.9% for 20 fps
videos, 66.2% for 10 fps videos, and 62.2% for 5 fps videos at
an initialization delay of 11. Our results were much worse at
lower and higher initialization delay values, including the default
parameter of 17. Our results suggest that YOLOv4 plus Norfair
has promise for fish tracking and that tuning the initialization
delay can recover performance on low frame rate video.

5.1. Limitations
• Image labeling is a slow error-prone task but large amounts of

labeled data are needed to train accurate and robust supervised
models like the type of models we evaluated here. We only
labeled a subset of the Ocqueoc River DIDSON dataset in
our tests and it would take a large amount of effort to label
the entire dataset manually. Moreover, inaccurate labels may
reduce the performance of deep learning models.
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• Although we were able to achieve good classification
performance on visual acoustic images, we observed that this
is a challenging task. Fish are not always clearly visible in the
images and there is a lot of background noise, so one should
expect lower average precision than can be obtained from
optical cameras. However, this tradeoffmay be worth pursuing
because acoustic sensors and cameras can be used in low light
or deep water.

• We were only able to perform limited testing of fish tracking
on the public datasets available to us. In particular, we
observed a number of identity switches which may make it
difficult to accurately count fish or, in particular, analyze their
trajectories. Moreover, there are a large number of metrics
needed to evaluate fish tracking and it remains unclear how
to thoroughly compare performance between videos captured
with different frame rates.

5.2. Future Work
• Human annotation has long been recognized as a limiting

factor to design, training and testing of deep learning models.
Newer self-supervised vision transformer models such as the
recent DINO (Distillation with no labels) (Caron et al., 2021)
model from Facebook might help reduce this limiting factor.
Self-supervised models learn a representation of images or
other data that can be applied to training models with fewer
(or no?) labeled training samples. Reducing or automating
the work of labeling datasets for deep learning would greatly
expand the use and availability of deep learning models for
specialized domains such as fish classification.

• We observed that image clarity of DIDSON sonar images had
a direct impact on performance of deep learning models for
fish detection and species classification We applied several
augmentation methods which greatly improved performance.
Developing and testing new augmentation methods purpose
built for acoustic data could improve performance and reduce
the number of training samples needed. Similarly, other
computer vision techniques could enhance the images before
processing and improve performance.

• Automatic tuning strategies could reduce or eliminate the
requirement to manually tune tracking parameters such as
the Norfair initialization delay parameter. Moreover, we tested
only a small subset of the possible models for detection,
classification and tracking and many more deep learning
models are introduced every year. Our goal here was simply
evaluating the feasibility of these techniques so we do not
claim that the models tried here are necessarily optimal.
Thus, we recommend evaluating other models and on larger
datasets to obtain a better understanding of how deep learning

can be applied to the tasks of detecting, classifying, and
tracking fish.

In summary, we demonstrated that deep learningmodels are now
a viable approach for detecting and classifying fish using visual
acoustic data. Challenges remain to be solved including reducing
or sidestepping the time and effort needed to label large high
quality datasets. We found that data augmentation strategies play
a key role in improving the models detection and classification
performance by increasing the number of training samples and
teaching the model to handle more challenging partially visible
fish. The Norfair library worked well for tracking fish on video
camera data, and tweaking the initialization delay parameter
allowed us to apply Norfair to track fish in low frame rate video.
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