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The immune response of the CNS is a defense mechanism activated upon injury to
initiate repair mechanisms while chronic over-activation of the CNS immune system
(termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety
of neurological and neurodegenerative disorders such as Alzheimer and Parkinson
diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV
dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key
enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central
role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products
of cyclooxygenases, and because their levels are significantly increased upon brain
injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory
stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1)
exert their actions, (2) potentially contribute to the transition from acute to chronic
inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome
pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders
such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as
stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude
by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to
prevent/delay neurodegeneration associated with neuroinflammation. In this context, we
suggest a shift from the traditional view that cyclooxygenases are the most appropriate
targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other
neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant
benefits as more effective therapeutic targets to treat chronic neurodegenerative
diseases, while minimizing adverse side effects.
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INTRODUCTION
Chronic neuroinflammation is recognized as a primary mecha-
nism involved in the pathogenesis of a variety of neurodegener-
ative disorders including Alzheimer, Parkinson, and Huntington
diseases as well as amyotrophic lateral sclerosis (Wyss-Coray and
Mucke, 2002; Liu and Hong, 2003; Glass et al., 2010; Herrup,
2010). Neuroinflammation is an active process detectable in the
earliest stages of these diseases (Zagol-Ikapitte et al., 2005; Liang
et al., 2007; Yoshiyama et al., 2007). The neurotoxicity associated
with inflammation makes it a potential risk factor in their patho-
genesis. Characterizing the self-perpetuating cycle of inflamma-
tory processes involving microglia and astrocytes in the brain that
drives the slow progression of neurodegeneration could be critical
for preventing/arresting these devastating disorders (Schwab and
McGeer, 2008; Herrup, 2010).

Major players in inflammation are the cyclooxygenases COX-
1 and COX-2 (Figure 1), which function as homodimers and
are key enzymes in the biosynthesis of prostaglandins (Smyth

et al., 2009). Although the brain expresses COX-1 and COX-2
under normal physiological conditions, it is clear that cyclooxy-
genases are implicated in neurodegeneration (Liang et al., 2007;
Bartels and Leenders, 2010). COX-1 is generally viewed as being
the homeostatic isoform, but studies suggest that it is actively
involved in some forms of brain injury (Choi et al., 2009; Aid
and Bosetti, 2011). The expression and activity of COX-2 are
largely responsive to adverse stimuli, such as inflammation and
physiologic imbalances (Yamagata et al., 1993). COX-2 activity is
markedly induced in a range of neurodegenerative disorders sub-
sequently leading to neuronal injury (Feng et al., 2003; Klivenyi
et al., 2003; Teismann et al., 2003). COX-2 up-regulation follow-
ing CNS injury is not restricted to neurons since COX-2 induction
is also apparent in glia (Consilvio et al., 2004). Although many
studies support the notion that COX-2 is involved in neurode-
generation, its contribution to the neurodegenerative process
remains poorly defined. Inhibiting cyclooxygenases with non-
steroidal anti-inflammatory drugs (NSAIDs) is being explored
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FIGURE 1 | Prostanoid biosynthetic pathway. Arachidonic acid is
converted via a two-step process (cyclooxygenation and hydroperoxidation)
by cyclooxygenase enzymes COX-1 or COX-2 into the unstable
prostaglandin PGH2. COX-1 is constitutively expressed while COX-2 is
mostly an inducible enzyme that is upregulated under stress conditions.
Non-steroidal anti-inflammatory drugs (NSAIDs) block the activities of both
enzymes while Coxibs are selective COX-2 inhibitors. PGH2 is then
converted to prostanoid products (PGE2, PGF2α, PGD2, PGI2, and TXA2)
by specific prostaglandin synthases that differ in their cell type distribution.
Of these products, PGD2 is highly unstable (estimated brain half-life of
1.1 min) resulting in the non-enzymatic formation of J2 prostaglandins.

as a therapeutic strategy to mitigate chronic inflammation and
prevent the onset/progression of neuropathology (Klegeris et al.,
2007; Vlad et al., 2008). However, the effectiveness of NSAIDs
could be counterproductive by blocking the generation of all
prostaglandin products of cyclooxygenases (Figure 1).

Current animal and cell models of neurodegenerative dis-
eases fail to address how prostaglandins redirect cellular events
to promote neurodegeneration. This is a crucial gap since some
prostaglandins are neuroprotective and others neurotoxic (Lucin
and Wyss-Coray, 2009; Iadecola and Gorelick, 2005). Since
prostaglandins act as potent local regulators of physiologic and

pathologic pathways linked to CNS inflammation, elucidating the
prostaglandin-dependent pathologic pathways will have a major
impact on blocking neurotoxicity linked to chronic neuroinflam-
mation with fewer undesirable side effects, and could lead to
preventing/delaying neurodegeneration.

FORMATION OF J2 PROSTAGLANDINS
Prostaglandins (PGs) are a family of 20-carbon unsaturated
fatty acids produced via the cyclooxygenase pathway in response
to numerous extrinsic and intrinsic stimuli (Figure 2). The
initial step in prostaglandin synthesis involves the hydrolysis
of membrane sn-2 glycerophospholipids (phosphatidylcholine,
phosphatidylethanolamine, and phosphatidylinositol) by phos-
pholipase A2 (PLA2 group IVA) to release arachidonic acid
(Tassoni et al., 2008; Smyth et al., 2009; Astudillo et al., 2012).
PLA2 is activated by increased calcium levels and phosphory-
lation. This event leads to the translocation of PLA2 from the
cytoplasm to intracellular membranes including the endoplasmic
reticulum and nuclear envelope, to allow its access to arachi-
donic acid-containing phospholipid substrates (Shimizu et al.,
2008).

Cyclooxygenases, which are bifunctional enzymes inserted into
the ER and nuclear membranes, will then catalyze the cyclooxy-
genation of arachidonic acid to PGG2 followed by hydroperoxida-
tion of PGG2 to PGH2 (Kulkarni et al., 2000; Smith et al., 2000;
Simmons et al., 2004). PGH2 diffuses from the ER lumen through
its membrane to the cytoplasm to be converted to more polar
prostanoids via synthases localized on the cytoplasmic face of the
ER (Schuster, 2002). The coupling of PGH2 synthesis with the
respective downstream synthase enzymes that produce the differ-
ent types of prostaglandins is intricately orchestrated in a tissue
and/or cell specific manner (Funk, 2001).

J2 prostaglandins (Figure 3) are derived from PGD2, which is
the most abundant prostaglandin in the brain (Ogorochi et al.,
1984; Hertting and Seregi, 1989; Uchida and Shibata, 2008;
Ricciotti and FitzGerald, 2011), and the one that changes the most
under pathological conditions (Liang et al., 2005). PGD2 is pro-
duced by two distinct prostaglandin D2 synthases (PGDS), which
carry out the isomerization of PGH2 to PGD2: (i) the hematopoi-
etic enzyme (H-PGDS) and (ii) the lipocalin enzyme (L-PGDS)
(Urade and Hayaishi, 2000; Urade and Eguchi, 2002). H-PGDS
is a cytosolic protein found abundantly in mast cells, antigen
presenting cells, and T helper type 2 (Th2) cells (Kanaoka and
Urade, 2003). L-PGDS is localized in the CNS, heart and male
genital organs (Urade and Eguchi, 2002). L-PGDS is one of the
most abundant CSF proteins produced in the brain (Kanekiyo
et al., 2007), representing 3% of total CSF protein (Xu and
Venge, 2000). Secreted L-PGDS in the CSF has a dual function:
it increases CSF-PGD2 levels (Scher and Pillinger, 2005) and also
acts as a lipophilic-ligand carrier (Urade and Hayaishi, 2000),
being a major endogenous Aβ-chaperone in the brain (Kanekiyo
et al., 2007).

PGD2 is unstable and readily undergoes in vivo and
in vitro non-enzymatic dehydration to generate the biologi-
cally active cyclopentenone J2 prostaglandins (Figure 3), which
include PGJ2, �12-PGJ2, and 15-deoxy-�12,14-PGJ2 (15d-
PGJ2) (Shibata et al., 2002; Uchida and Shibata, 2008; Gilroy,
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FIGURE 2 | Formation of prostaglandin J2 (PGJ2). Upon cell activation
by mechanical trauma, cytokines, growth factors or other stressful stimuli,
phospholipase A2 (PLA2) is recruited from the cytoplasm to intracellular
membranes (nucleus or endoplasmic reticulum) to catalyze the hydrolysis
of membrane sn-2 glycerophospholipids releasing arachidonic acid (AA,
dark green). AA is converted by COX-1 or COX-2 to PGH2 (medium green)
which is then converted to PGD2 (light green) by PGD synthase. PGD2
undergoes a non-enzymatic dehydration (–H2O) to biologically active PGJ2
(yellow). PGJ2 can be localized to exosomes, to transport systems or to
nuclear receptors to mediate its function.

2010). The half-life of PGD2 in the brain was estimated to be
1.1 min and in the blood 0.9 min (Suzuki et al., 1986).

PGJ2 and its metabolites are not stored in tissues or cells and
their production increases with diverse stimuli. Prostaglandins
are largely produced in the brain by activated microglia, reac-
tive astrocytes and neurons. During CNS inflammation, these
cells make large quantities of prostaglandins such as PGE2 and
PGD2 (Liu et al., 2003) as well as J2 prostaglandins (Bernardo
et al., 2003). For example, LPS-activated microglia in culture, pro-
duced ∼3 ng/ml media of 15d-PGJ2 upon 72 h, and ∼2 ng/ml
of PGD2 upon 24 h (Bernardo et al., 2003). J2 prostaglandins
have been detected in vivo in human body fluids (Hirata et al.,
1988), human atherosclerotic plaques (Shibata et al., 2002) and
tissues of patients with sporadic ALS (Kondo et al., 2002; Zhang
et al., 2010). In addition, a range of studies showed that J2
prostaglandins are generated in vivo upon various conditions
related to brain injury (see below).

FIGURE 3 | Generation of J2 prostaglandins. PGJ2 is generated by
non-enzymatic dehydration of PGD2. The J2 metabolites �12-PGJ2 and
15d-PGJ2 are formed from PGJ2 either by reactions catalyzed by human
serum albumin (HSA) or by dehydration (–H2O), respectively. Asterisks
indicate α, β-unsaturated carbonyl groups.

IN VIVO LEVELS OF J2 PROSTAGLANDINS IN THE CNS
Prostaglandins are present in body fluids in the pico to nanomo-
lar range reaching low micromolar levels at local sites of acute
inflammation (Offenbacher et al., 1986; Hertting and Seregi,
1989). For example, in human airways PGD2 rose in 9 min to
an average of 150-fold in five patients in response to an allergen
(Murray et al., 1986). Moreover, exosomes, which are extracel-
lular bioactive vesicles released from multivesicular bodies that
mediate intercellular signaling (Subra et al., 2010), were found to
contain a large panel of free fatty acids, including arachidonic acid
and its derivatives, such as PGE2 and PGJ2 (Subra et al., 2010).
In fact, the levels of these prostaglandins within exosomes was
determined to be in the micromolar range, thus at concentrations
capable of triggering prostaglandin-dependent biological effects
(Subra et al., 2010).

J2 prostaglandins (Table 1) are bioactive cyclopentenone
prostaglandins produced in vivo during inflammation (Rajakariar
et al., 2007). Like their precursor, J2 prostaglandins can be con-
sidered some of the most abundant prostaglandins in the brain
(Katura et al., 2010). For example, plasma levels of 15d-PGJ2
increased 12-fold and 23-fold in patients following acute stroke or
with vascular risk factors and atherothrombotic infarcts, respec-
tively (Blanco et al., 2005). In rodents, stroke (cerebral ischemia)
and traumatic brain injury (TBI) elevate PGJ2 levels in the brain
to concentrations similar to those shown to be neurotoxic in vitro
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(Kunz et al., 2002; Hickey et al., 2007; Liu et al., 2013a,b,c; Shaik
et al., 2014). Accordingly, the in vivo concentration of free PGJ2
in the brain upon stroke and TBI, increases from almost unde-
tectable to the 100 nM range (Liu et al., 2011, 2013a). These levels
represent average brain concentrations, but it is predicted that
local cellular and intracellular concentrations of J2 prostaglandins
are much higher (Liu et al., 2013b). It is also clear that this is
an underestimation of the overall J2 prostaglandin levels in vivo,
as they bind covalently to proteins (see below), and therefore
reported levels of free J2 prostaglandins do not represent their
total amounts.

MODES OF ACTION OF J2 PROSTAGLANDINS
Despite their lipid nature, prostaglandins are charged anions thus
have low intrinsic permeability across the plasma membrane, but
they cross it twice (Figure 4): once following their synthesis as
they are released from the cytoplasm into the extracellular envi-
ronment (efflux), and then again when they undergo reuptake
into the cytoplasm (influx), a process that mimics neurotransmit-
ter reuptake (Schuster, 1998; Chan et al., 2002; Chi et al., 2014).
Prostaglandin efflux is mediated (a) by diffusion driven by pH
and the membrane potential, and (b) by the action of transporters
such as multidrug resistance-associated proteins (MRPs) and
prostaglandin transporters (PGTs) (Schuster, 2002; Ohkura et al.,

2014). Prostaglandin influx is mediated by PGTs as well (Schuster,
2002; Chi et al., 2006). Overall, prostaglandin transport requires
further investigation. A well-characterized PGT belongs to the
family of the 12-transmembrane organic anion transporting
polypeptides (OATPs), and mediates the influx of prostaglandins
only (Chi et al., 2006; Chi and Schuster, 2010). PGT mediated
influx is a required step for prostaglandin metabolism (Nomura
et al., 2004), which occurs intracellularly. PGD2 is a substrate for
PGT (Itoh et al., 1996) and its metabolism to PGJ2 highly likely
involves PGT mediated uptake. Interestingly, this PGT is a lac-
tate/prostaglandin exchanger in which prostaglandin influx varies
with lactate levels, so that cells engaged in glycolysis thus pro-
ducing high levels of lactate, are energetically poised to uptake
prostaglandins via this PGT (Chan et al., 2002; Banu et al., 2003).
This PGT is present in many tissues including the brain (Kanai
et al., 1995; Lu et al., 1996).

Prostaglandins also can be transferred from cell to cell via exo-
somes, which are extracellular bioactive vesicles released from
multivesicular bodies that mediate intercellular signaling (Subra
et al., 2010). As such, exosomes are considered intercellular “sig-
nalosomes” as they carry arachidonic acid, phospholipases (A2
and D2), COX-1 and 2, and a whole set of prostaglandins,
including PGD2, E2, and J2 (Subra et al., 2010). In fact, the
concentrations of these prostaglandins within exosomes is in the

FIGURE 4 | Modes of action of J2 prostaglandins. PGJ2 and its
metabolites exit the cell via diffusion or poorly defined transporters, and can
enter cells or the nucleus via active transporters at the plasma or nuclear
membranes. PGJ2 and its metabolites exert their actions by different

mechanisms. They can bind to the DP2 receptor on the plasma membrane or
to the peroxisomal proliferator activator receptor (PPARγ) at the nuclear
membrane. Trafficking of PGJ2 and its metabolites in and out of cells can also
occur via exosomes.
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micromolar range, thus at concentrations capable of triggering
prostaglandin-dependent biological effects (Subra et al., 2010).
Moreover, exosome internalization by neighboring cells is consid-
ered a mechanism for prostaglandins to reach their intracellular
targets (Subra et al., 2010). Exosomes are released from and taken
up by neurons in a synaptic activity-dependent manner that is
also regulated by calcium (Lachenal et al., 2011; Perez-Gonzalez
et al., 2012; Chivet et al., 2013; Morel et al., 2013). Furthermore,
exosomes have recently been considered to be propagation vehi-
cles for spreading of toxic proteins (Bellingham et al., 2012) as
well as prostaglandins, such as neurotoxic PGJ2, and could thus
play a significant role in the spread of pathology in a variety of
neurodegenerative disorders (Schneider and Simons, 2013).

As they are unstable, prostaglandins exert their effects near
their sites of synthesis thus acting as autocrine or paracrine lig-
ands (Scher and Pillinger, 2005). The efflux of newly synthesized
prostaglandins mediates their biological actions through their cell
surface receptors, and prostaglandin influx from the extracellular
milieu mediates their action through specific nuclear receptors or
their inactivation (Banu et al., 2003). Prostaglandin inactivation
in the cytoplasm is carried out by the enzyme NAD(+)-linked 15
hydroxyprostaglandin dehydrogenase (15-PGDH); its expression
and that of COX-2 are reciprocally regulated in cancer, thus both
enzymes control the cellular levels of prostaglandins by opposing
means (Tai et al., 2006; Tai, 2011).

The effects of J2 prostaglandins are mediated by at least three
different means.

G PROTEIN-COUPLED RECEPTORS (GPCR, FIGURE 4)
In general, the prostaglandin GPCRs are present not only at the
plasma membrane (Ricciotti and FitzGerald, 2011) but also at the
nuclear membrane, thus providing for intracrine (intracellular)
signaling (Zhu et al., 2006). PGD2, the precursor of PGJ2, binds
to the DP1 and DP2 receptors (Urade and Eguchi, 2002). While
the activation of the DP1 receptor is coupled to the G protein Gs,
resulting in increased cAMP levels, activation of the DP2 recep-
tor and its coupling to Gi decreases cAMP levels, and increases
intracellular calcium (Hata and Breyer, 2004). J2 prostaglandins
bind to DP1 and DP2, however they have a higher affinity for
DP2 (as much as 100-fold) and bind to it with an affinity simi-
lar to PGD2, i.e., in the nanomolar range (Monneret et al., 2002;
Pettipher et al., 2007). DP2 activation was shown to potentiate
neuronal injury in hippocampal neuronal cultures and organ-
otypic slices, while DP1 activation is neuroprotective (Liang et al.,
2005, 2007).

NUCLEAR RECEPTORS (FIGURE 4)
15d-PGJ2 and �12-PGJ2 are endogenous ligands for the
nuclear peroxisomal proliferator activator receptor (PPARγ), to
which they bind with high affinity (Gilroy, 2010; Paulitschke
et al., 2012), although this remains controversial (Ricciotti and
FitzGerald, 2011). PPARγ plays a major role in the regulation of
adipogenesis, glucose homeostasis, cellular differentiation, apop-
tosis and inflammation (Qi et al., 2010). PPARγ agonists promote
neuroprotection in models of stroke, AD, HD, PD, MS, and spinal
cord injury, via anti-inflammatory or antioxidant-dependent
mechanisms (Kapadia et al., 2008; Kiaei, 2008).

J2 prostaglandins also act through PPARγ-independent mech-
anisms including activation of the MAPK and JNK pathways
(Wilmer et al., 2001; Li et al., 2004a), stabilization of the tran-
scription factor Nrf2 via its interaction with Keap1 (Itoh et al.,
2004; Kaspar et al., 2009; Haskew-Layton et al., 2013), and inhibi-
tion of the NFκB pathway (Rossi et al., 2000; Straus et al., 2000).
This may account for the different effects of 15d-PGJ2 and other
PPAR ligands (Scher and Pillinger, 2005).

DIRECT INTERACTION WITH INTRACELLULAR PROTEINS CAUSING A
SPECIFIC POST-TRANSLATIONAL MODIFICATION (FIGURE 5)
J2 prostaglandins are unique among the prostaglandin fam-
ily in that they have α, β-unsaturated carbonyl groups (aster-
isks, Figure 5), promoting Michael addition reactions with free
sulfhydryl groups of cysteines in glutathione and cellular pro-
teins (Straus and Glass, 2001). These cyclopentenone PGs cova-
lently modify several proteins, including the p50 subunit of
NFκB, which may explain its anti-inflammatory effects (Cernuda-
Morollon et al., 2001). They also modify thioredoxin reductase,
an enzyme that protects against oxidative damage (Moos et al.,
2003) and activate Ras, a small GTPase oncogene known to
activate Erk signaling pathways (Oliva et al., 2003).

Electrophile binding to key protein cysteine(s) by endogenous
compounds such as PGJ2 is regarded as playing an important
role in determining whether neurons will live or die (Satoh and
Lipton, 2007). In fact, with neuronal cultures, we established
that PGJ2 was by far the most neurotoxic of four prostaglandins
tested, including PGA1, D2, E2, and J2, with PGE2 being the
least neurotoxic of the four under the conditions tested (Li et al.,
2004b). The response to J2 prostaglandins is different from that
of agonists that do not form covalent adducts with proteins. A
slow steady stream-like release of J2 prostaglandins as a result of
chronic neuroinflammation could be cumulative, leading over-
time to accumulation of covalent PGJ2-protein adducts until they
reach a toxic threshold. Thus, covalent protein modification in the
brain by highly reactive electrophiles such as J2 prostaglandins,
represents a novel pathologic post-translational change (Higdon
et al., 2012b) and could play a critical role in progressive neurode-
generation.

J2 PROSTAGLANDIN: POTENTIAL TRANSITION TO CHRONIC
INFLAMMATION AND PATHOLOGY SPREADING
The mechanisms underlying the transition from acute to chronic
inflammation are poorly understood. One hypothesis sup-
ported by animal studies is that in addition to their role in
mediating acute inflammation, prostaglandins also function in
the transition and maintenance of chronic inflammation, cul-
minating in long-lasting effects (Aoki and Narumiya, 2012).
Prostaglandins accomplish this by amplifying cytokine signal-
ing, up-regulating COX-2 (Figure 6), inducing chemokines,
and recruiting inflammatory cells such as macrophages (Aoki
and Narumiya, 2012). We and others demonstrated that J2
prostaglandins induce COX-2 up-regulation in cancer cells (Kim
et al., 2008; Kitz et al., 2011) and neuronal cells (Li et al., 2004a)
and this event can be driven by MAPK activation (Li et al.,
2004a; Kitz et al., 2011) or Akt/AP-1 activation (Kim et al.,
2008).
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FIGURE 5 | J2 prostaglandins interact directly with cellular proteins. J2 prostaglandins (shown for 15d-PGJ2) covalently modify selective proteins through
Michael addition. Their α,β-unsaturated carbonyl groups (asterisks) react with free sulfhydryls (SH) in cysteines on glutathione and cellular proteins.

FIGURE 6 | Potential mechanisms by which J2 prostaglandins promote

neurodegeneration. During neuroinflammation PGJ2 (and its metabolites)
are released from activated microglia and astrocytes. Free or exosome
enclosed PGJ2 mediates the spread of neurodamage within the brain via
intercellular uptake. PGJ2 also increases the levels of COX-2, thus
activating a positive feedback loop that could mediate the transition from
acute to chronic inflammation.

It is also possible that J2 prostaglandins mediate the spread
of neurodamage within the brain via exosomes (Figure 6), as
discussed above under “Modes of action of J2 prostaglandins.”
This is important because exosomes were recently considered
propagation vehicles for spreading neuropathology in a range of
neurodegenerative diseases including AD, PD, and HD (Schneider
and Simons, 2013). In vitro studies demonstrate that exosomes

are released from neurons in a synaptic activity-dependent man-
ner regulated by calcium (Lachenal et al., 2011). This later aspect
of the regulation of the exosome-release by calcium could be
particularly relevant to J2 prostaglandins. They are potent ago-
nists (EC50 of ∼10 nM) of the DP2 receptor (Monneret et al.,
2002), which signals through elevation of intracellular calcium
and reduction in intracellular cAMP (Pettipher et al., 2007), thus
J2 prostaglandins could induce exosome-release.

These findings support the notion that targeting prostaglandin
signaling for therapeutics represents a highly innovative strat-
egy to prevent/block chronic neuroinflammation and disease
progression.

J2 PROSTAGLANDIN TARGETS: UPP AND MITOCHONDRIA
COX-2 neurotoxicity seems to be mediated by PGD2 but not
by PGE2 (Liang et al., 2005). PGD2 is the most abundant
prostaglandin in the brain (Abdel-Halim et al., 1977; Narumiya
et al., 1982; Hertting and Seregi, 1989). For example, in young rats
(16–18 post-natal) subjected to a 12-min asphyxial cardiac arrest,
the brain levels of PGE2 assessed by UPLC–MS/MS were ∼35.5
pmol/g of tissue, while those of PGD2 were at least 26 fold higher,
reaching ∼937 pmol/g of tissue (Shaik et al., 2014). PGD2 elicits
its cytotoxicity via its bioactive metabolites J2 prostaglandins (Liu
et al., 2013b). In contrast to other reviews (Musiek et al., 2005;
Uchida and Shibata, 2008; Scher and Pillinger, 2009; Surh et al.,
2011; Oeste and Perez-Sala, 2014), our review addresses in detail
the effects of J2 prostaglandins on two targets that play key roles in
the neurodegenerative process, namely, the ubiquitin-proteasome
pathway and mitochondrial function (Figure 7).

UBIQUITIN-PROTEASOME PATHWAY (UPP, FIGURE 7)
It is well-established that in neuronal cells J2 prostaglandins
trigger the accumulation/aggregation of ubiquitinated proteins
(see for example Li et al., 2004b; Ogburn and Figueiredo-
Pereira, 2006; Liu et al., 2011, 2013a). This protein accumula-
tion/aggregation can be mediated by at least two mechanisms
shown to be affected by J2 prostaglandins.

Inhibition of the 26S proteasome
We and others demonstrated that J2 prostaglandins impair the
26S proteasome (Shibata et al., 2003; Ishii and Uchida, 2004;
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FIGURE 7 | J2 prostaglandins target the ubiquitin proteasome

pathway (UPP) and mitochondria. J2 prostaglandins affect the UPP by:
(1) impairing the 26S proteasome by inducing oxidation of proteasome
subunits, or promoting its disassembly, (2) inhibiting de-ubiquitinating
enzymes (DUBs), and (3) covalently modifying specific active site cysteines
on UPP components such as E1 activating enzymes, E2 conjugating
enzymes, and some E3 ligases. J2 prostaglandins can also inhibit
mitochondrial function by: (1) inhibiting NADH-ubiquinone reductase in
complex I, (2) reducing membrane potential, (3) blocking fission, and (4)
inducing the generation of reactive oxygen species (ROS) and apoptosis.

Wang et al., 2006; Koharudin et al., 2010). In neuronal cells, these
prostaglandins induce the oxidation of at least one proteasome
subunit, i.e., S6 ATPase (Rpt5), which seems to be one of the
proteasome subunits most vulnerable to protein carbonylation
(Ishii et al., 2005). PGJ2 also promotes dissociation of the 20S
core particle from the 19S regulatory particle (Wang et al., 2006),
resembling the effects of agents that induce oxidative stress (Aiken
et al., 2011). The effect of J2 prostaglandins on the proteasome are
attributed to their electrophilic properties, since a 15d-PGJ2 ana-
log that lacks the double bond in the cyclopentenone ring failed
to inhibit the proteasome (Shibata et al., 2003). Furthermore,
15d-PGJ2/proteasome conjugates were detected in neuronal cells
treated with biotinylated 15d-PGJ2 (Shibata et al., 2003).

These data indicate that one of the effects of inflamma-
tion mediated by J2 prostaglandin is proteasome inhibition.
Conversely, proteasome inhibition suppresses inflammation (Bi
et al., 2012). It was recently shown that the mechanisms by
which the antibiotic rifampicin suppresses microglia activation

upon LPS-treatment, is by downregulating the Rpt1 (MSS1) pro-
teasome subunit (Bi et al., 2012). Likewise, downregulation of
the proteasome subunit Rpn9 (PSMD13) by siRNA suppresses
microglial activation and diminishes the production of inflamma-
tion associated factors such as nitric oxide synthase, nitric oxide,
cyclooxygenase-2, and prostaglandin E2 (Bi et al., 2014).

A close relation between proteasome and inflammation is fur-
ther supported by the finding that cyclooxygenases 1 and 2 are
turned over by the 26S proteasome (Rockwell et al., 2000; Yazaki
et al., 2012) via the endoplasmic reticulum-associated degrada-
tion (ERAD) pathway (Mbonye et al., 2006, 2008). Proteasomal-
mediated turnover of COX-2 is regulated by the G protein-
coupled receptor prostaglandin E1 (EP1 for PGE2) independently
of receptor activation (Haddad et al., 2012). EP1 is present both
at the plasma membrane and at the inner and outer membrane of
the nuclear envelop (Bhattacharya et al., 1998). EP1 may act as a
scaffold for an E3 ligase that ubiquitinates COX-2 (Haddad et al.,
2012). In addition to the cyclooxygenases, prostaglandin syn-
thases are also turned over by the proteasome. As such, increases
in intracellular calcium result in the rapid proteasomal-mediated
degradation of the PGD2 prostaglandin synthase H-PGDS in
human megakaryocytic cells (Yazaki et al., 2012). Degradation of
other prostaglandin synthases by the proteasome remains to be
investigated.

Inhibition of de-ubiquitinating enzymes (DUBs)
The UPP and autophagy play a critical role in protein quality
control and thus have attracted special attention for drug devel-
opment (Edelmann et al., 2011). In regard to the UPP, which is the
focus of this review, the initial effort was directed toward protea-
some inhibitors, although not particularly for neurological con-
ditions (Ristic et al., 2014). However, proteasome inhibition can
be quite unspecific and thus may lead to a range of undesirable
side effects. De-ubiquitinating enzymes known as DUBs are rele-
vant UPP targets upstream of the proteasome and are the focus of
recent attention for drug development. Several DUBs have been
targeted for cancer treatment (Crosas, 2014), and one for neuro-
logical conditions (USP14) (Lee et al., 2010). At least one hundred
(if not more) DUBs from five different gene families are present in
humans, and four of these families are thiol proteases and one is a
metalloprotease (Eletr and Wilkinson, 2014). These DUBs carry-
out different functions, some of which involve processing newly
translated ubiquitin (Ub) to provide monomers for conjugation
and chain formation, or trimming mono-Ub from the distal end
of a poly-Ub chain, or disassembling poly-Ub chains, or remov-
ing poly-Ub chains from their substrates (Clague et al., 2013). All
together these functions provide a means for DUBs to regulate
“where, when, and why” ubiquitinated substrates are degraded
by the 26S proteasome (Ristic et al., 2014).

We and others showed that J2 prostaglandins inhibit some of
the thiol DUBs including UCH-L1 and UCH-L3 (Mullally et al.,
2001; Li et al., 2004b; Liu et al., 2011). In particular, UCH-L1 is
predicted to be one of the most abundant proteins in the brain
reaching 1–2% of the total protein content (Wilkinson et al.,
1992), and its activity is highly diminished by J2 prostaglandins
(Li et al., 2004b; Koharudin et al., 2010). These prostaglandins
trigger UCH-L1 unfolding and aggregation by forming a covalent
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adduct with a single thiol group on Cys 152 (Koharudin et al.,
2010). UCH-L1 plays an important role in aging and neurode-
generative disorders such as AD and PD, thus its alterations by J2
prostaglandins are highly relevant to the neurodegenerative pro-
cess as discussed below under “neurodegenerative disorders” and
reviewed in (Ristic et al., 2014).

Alteration of other UPP components that have cysteines at the
active site
Other components of the UPP, such as E1 activating enzymes, E2
conjugating enzymes, and some E3 ligases also have active site
cysteines (Metzger et al., 2014). Whether J2 prostaglandins affect
these and/or other thiol DUBs remains to be investigated. Protein
modification by J2 prostaglandins seems to be highly selective
where only a specific set of cysteine residues are vulnerable to
covalent modification and this event occurs independently of pro-
tein thiol content (Higdon et al., 2012a; Vasil’ev et al., 2014). Of
the several hundred cellular proteins with potentially reactive thi-
ols, only ∼10% form covalent adducts with J2 prostaglandins,
and are considered members of the “electrophile-responsive pro-
teome” (Ceaser et al., 2004). Although J2 prostaglandins interact
with selective targets, they can covalently modify a wide vari-
ety of intracellular proteins. Proteomic approaches established
that J2 prostaglandins covalently bind to specific sites within
the plasma membrane, nuclear and cytosolic subcellular frac-
tions (Yamamoto et al., 2011). At least eleven plasma mem-
brane proteins were identified as binding biotinylated 15d-PGJ2
and they were distributed into three functional groups: gly-
colytic enzymes, molecular chaperones, and cytoskeletal proteins
(Yamamoto et al., 2011). Furthermore, J2 prostaglandin binding
alters protein catalysis, binding, structural function, and trans-
port (Marcone and Fitzgerald, 2013; Oeste and Perez-Sala, 2014).

MITOCHONDRIA (FIGURE 7)
J2 prostaglandins inhibit mitochondrial function leading to
oxidative stress and apoptosis (Kondo et al., 2001; Lee et al., 2009;
Paulitschke et al., 2012). These prostaglandins inhibit the activity
of the enzyme NADH-ubiquinone reductase from mitochondrial
respiratory complex I, most likely by adduct formation (Martinez
et al., 2005). J2 prostaglandins also induce the generation of reac-
tive oxygen species (ROS), trigger a drop in membrane potential
(Pignatelli et al., 2005; Gutierrez et al., 2006), interact with the
cytoskeleton (Stamatakis et al., 2006) and block mitochondrial
division through covalent modification of dynamin-related pro-
tein 1 (Drp1) which regulates mitochondrial fission (Mishra et al.,
2010). A mitochondrial targeted analog of 15d-PGJ2 (mito-15d-
PGJ2) was more efficient than 15d-PGJ2 at inducing apoptosis,
was less potent at up-regulating Keap1-dependent antioxidant
expression of HO-1 and GSH, and caused profound defects in
mitochondrial bioenergetics and mitochondrial membrane depo-
larization (Diers et al., 2010). This interesting approach that
involved specifically targeting 15d-PGJ2 to mitochondria by con-
jugation to a lipophilic cation, demonstrates the feasibility of
manipulating its biological effects (Diers et al., 2010).

UPP/MITOCHONDRIA INTERACTION
UPP and mitochondrial function are inherently connected, and
since J2 prostaglandins affect both processes we will discuss

this interaction. On the one hand the UPP degrades various
mitochondrial proteins contributing to mitochondrial quality
control (Taylor and Rutter, 2011). Mitochondrial proteins that
are UPP substrates include (a) damaged and/or misfolded nuclear
encoded proteins that are destined for import into mitochon-
dria, (b) defective proteins at the outer mitochondrial membrane
(OMM) extracted by p97 and delivered to the proteasome, and
(c) non-OMM proteins, although the mechanistic details of how
these proteins in the inner compartments retrotranslocate to the
OMM remains poorly defined (Shanbhag et al., 2012). In addi-
tion, both the ubiquitin ligase parkin (Narendra and Youle, 2011)
and the de-ubiquitinating enzyme USP30 (Bingol et al., 2014)
seem to regulate mitochondrial turnover via mitophagy. The
PINK1-Parkin pathway proposed to promote mitophagy remains
controversial in neurons (Exner et al., 2012).

On the other hand, mitochondria provide ATP for protein
ubiquitination and for 26S proteasome function (Livnat-Levanon
and Glickman, 2011). E1 activity, the first step of the ubiquitina-
tion cascade, requires ATP for formation of a thiol ester adduct
with ubiquitin (Haas et al., 1982; Schulman and Harper, 2009).
If E1 activity is impaired all protein ubiquitination should be
diminished. Moreover, the degradation of proteins by the 26S
proteasome is highly dependent on ATP binding and hydrolysis
(Liu et al., 2006).

It is postulated that in neurons even a modest restriction
of ATP production by mitochondria far outweighs the negligi-
ble effects of ROS, although the underlying mechanisms are not
clearly understood (Nicholls, 2008). In a recent study with neu-
rons (Huang et al., 2013), we demonstrated that low ATP levels
caused by mitochondrial dysfunction, correlated with impair-
ment of the UPP: there was a decline in E1 and 26S proteasome
activities with a concomitant rise in 20S proteasomes. This decline
in UPP function occurred upon acute and long-term mitochon-
drial impairment. Notably, upon energy depletion, calpain acti-
vation led to the selective cleavage of Rpn10, a 26S proteasome
subunit, without affecting other proteasome subunits tested.
Rpn10 cleavage combined with ATP depletion, contributed to
the decline in 26S proteasome function. We postulated that upon
mitochondrial dysfunction, ATP-depletion and calpain activation
contribute to the demise of protein turnover by the UPP in favor
of unregulated and energy-independent protein degradation by
20S proteasomes. This adaptive response to energy deficiency may
be suitable for short-term periods to promote degradation of ran-
domly unfolded oxidized proteins. However, if chronic it can lead
to neurodegeneration, as regulated protein degradation by the
UPP is essential for neuronal survival (Huang et al., 2013).

COMPLEX EFFECTS OF J2 PROSTAGLANDINS
Overall, the role of J2 prostaglandins in inflammation is com-
plex (Harris et al., 2002; Wall et al., 2012). On the one hand,
they have emerged as key anti-inflammatory agents as they inhibit
the production of pro-inflammatory mediators such as iNOS,
TNFα, and IL1β, suppress microglia and astrocyte activation and
induce apoptosis (Eucker et al., 2004; Giri et al., 2004; Mrak
and Landreth, 2004). On the other hand, J2 prostaglandins are
pro-inflammatory agents. They stimulate the production of pro-
inflammatory mediators such as IL8 and activate MAPK (Meade
et al., 1999; Zhang et al., 2001). Furthermore, 15d-PGJ2 seems
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to play a role in the regulation of human autoimmune diseases
and to inhibit inflammation in models of arthritis, ischemia-
reperfusion injury, inflammatory bowel disease, lupus nephritis,
and AD (Scher and Pillinger, 2009).

J2 prostaglandins also display both protective and destructive
effects. Their biological activities include antiviral and antitu-
moral effects, modulation of the heat shock response, induction
of oxidative stress, and apoptosis (Uchida and Shibata, 2008), as
well as up-regulation of the death receptor 5 (DR5), sensitization
to TRAIL-induced cytotoxicity, and caspase 8 activation (Kondo
et al., 2002; Nakata et al., 2006; Su et al., 2008; Metcalfe et al.,
2012). Although their anti-proliferative and pro-apoptotic effects
are most frequently described, J2 prostaglandins also induce the
proliferation of different forms of cancer cells when used at
nanomolar to low micromolar concentrations (Oliva et al., 2003).

The conflicting effects of J2 prostaglandins most likely depend
on their intracellular targets and downstream pathways which
can be dose- and cell-type dependent (Servidei et al., 2004). J2
prostaglandins may exert some of their anti- or pro-inflammatory
as well as anti- or pro-survival effects through PPARγ-dependent
mechanisms. However, these prostaglandins also exert their
actions through PPARγ-independent pathways as discussed above
under “modes of action of J2 prostaglandins.” As such, it is known
that specific PPARγ ligands, such as pioglitazone, do not repli-
cate all of the effects attributed to J2 prostaglandins. Identifying
the mechanism by which J2 prostaglandins exert their neuro-
toxic effects could lead to new strategies to prevent and/or delay
neurodegeneration linked to inflammation.

J2 POSTAGLANDINS AND NEURODEGENERATIVE
DISORDERS (TABLE 2)
Chronic neuroinflammation is recognized as a primary mecha-
nism involved in neurodegenerative diseases such as AD, PD, and
ALS (Liu and Hong, 2003; Glass et al., 2010; Cudaback et al.,
2014; Mosher and Wyss-Coray, 2014). Moreover, UPP and mito-
chondrial dysfunction as interdependent cellular events (Livnat-
Levanon and Glickman, 2011; Taylor and Rutter, 2011) are both
impaired in many neurodegenerative disorders (Lin and Beal,
2006; Paul, 2008). However, the underlying mechanisms that
bring about and/or maintain these malfunctions are unknown. A
self-perpetuating cycle of inflammatory processes involving brain
immune cells (microglia and astrocytes) could drive the slow
progression of the neurodegenerative process, leading to dysfunc-
tion in protein degradation by the UPP and ATP production by
mitochondria. Preventing/arresting this self-perpetuating inflam-
matory cycle is a very promising neuroprotective strategy for these
disorders (Lima et al., 2012). We will focus on a review of studies
showing that J2 prostaglandins are associated with AD, PD, and
ALS, as well as stroke, TBI and Krabbe disease (Table 2).

ALZHEIMER DISEASE
PGD2 levels were found to be significantly increased in the
frontal cortex of AD patients compared to age matched con-
trols (Iwamoto et al., 1989; Yagami, 2006). In AD patients and
in Tg2576 mice, a well-established AD model (Hsiao et al., 1996),
the levels of the PGD2 synthase H-PGDS and the PGD2 recep-
tor DP1 were found to be selectively up-regulated in microglia

and astrocytes within senile plaques (Mohri et al., 2007). These
results support the notion that PGD2 acts as a mediator of plaque
associated inflammation in the AD brain and they could also
explain the pharmacologic mechanisms underlying the favorable
response of patients with AD to non-steroidal anti-inflammatory
drugs (Mohri et al., 2007).

The other PGD2 synthase L-PGDS, which is one of the most
abundant CSF proteins produced in the brain, was localized in
amyloid plaques in both AD patients and Tg2576 mice (Kanekiyo
et al., 2007). Secreted L-PGDS in the CSF has a dual function: it
increases CSF-PGD2 levels (Scher and Pillinger, 2005) and also
acts as a lipophilic-ligand carrier (Urade and Hayaishi, 2000).
L-PGDS was found to bind Aβ monomers and prevent Aβ aggre-
gation, suggesting that L-PGDS is a major Aβ chaperone and
disruption of this function could be related to the onset and
progression of AD (Kanekiyo et al., 2007).

L-PGDS and PGD2 also promote migration and morphologi-
cal changes of microglia and astrocytes that resemble those exhib-
ited under reactive gliosis (Lee et al., 2012). This L-PGDS function
is mediated by its interaction with myristoylated alanine-rich
protein kinase C substrate (MARCKS), which in turn activates
the AKT/Rho/JNK pathway (Lee et al., 2012). MARCKS is a
plasma membrane resident abundant in the nervous system, and
that depending on its phosphorylation by PKC acts as an actin
cross-linker to regulate cellular adhesion and spreading, migra-
tion, proliferation, and fusion through its interaction with the
cytoskeleton (Arbuzova et al., 2002). MARCKS also plays a role
in the maintenance of dendritic spines and contributes to PKC-
dependent morphological plasticity in hippocampal neurons
(Calabrese and Halpain, 2005). Together these results support an
essential role for L-PGDS in the regulation of glial cell migration
and morphology, and perhaps neuronal plasticity, within the CNS
(Lee et al., 2012).

The transport of prostaglandins across cell and organelle
membranes involves, among others, a prostaglandin trans-
porter (PGT) (Kanai et al., 1995). Immunohistochemical and
immunofluorescent analyses of this PGT in human brains showed
its localization in neurons, microglia, and astrocytes in all brain
tissues assessed (Choi et al., 2008). In addition, PGT levels were
lower in AD than in age-matched control brain homogenates,
suggesting that prostaglandins might not be cleared at the normal
rate in AD brains (Choi et al., 2008).

In relation to J2 prostaglandins, the finding that they impair
the UPP is highly relevant to AD (Selkoe, 2004; Shaw et al.,
2007). Defective proteasome activity is linked to the early phase
of AD characterized by synaptic dysfunction, as well as to late
AD stages linked to accumulation and aggregation of ubiquiti-
nated (Ub)-proteins in both senile plaques and neurofibrillary
tangles (Upadhya and Hegde, 2007; Oddo, 2008). Moreover, J2
prostaglandins inhibit the de-ubiquitinating enzyme UCH-L1 (Li
et al., 2004b; Liu et al., 2011), which is down-regulated in AD
brains; UCH-L1 down-regulation is inversely proportional to the
number of neurofibrillary tangles (Choi et al., 2004).

Besides the effects on the UPP, we showed in rat primary
cerebral cortical cultures that PGJ2 induced accumulation of
Ub-proteins, caspase-activation, TAU cleavage at Asp421, and
neuritic dystrophy (Arnaud et al., 2009; Metcalfe et al., 2012).
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Table 2 | J2 postaglandins and neurodegenerative disorders.

Disease PGD2/PGJ2

pathway

Effects/Findings References

Alzheimer PGD2 ↑ Levels in frontal cortex of AD patients Iwamoto et al., 1989; Yagami, 2006

PGJ2 ↓ UPP (UCH-L1 and proteasome) function, relevant to AD and
other neurodegenerative disorders
↑ Caspase-dependent TAU cleavage
↑ Ub protein and TAU aggregation

Li et al., 2004b; Choi et al., 2004; Upadhya and
Hegde, 2007; Oddo, 2008; Liu et al., 2011
Arnaud et al., 2009; Metcalfe et al., 2012

H-PGDS ↑ Levels in AD patients and Tg2576 mouse (in astrocytes and
microglia within senile plaques)

Mohri et al., 2007

L-PGDS ↑ Levels in AD patients and Tg2576 mouse (within senile
plaques)
↑ Binds Ap monomers, prevents aggregation
↓ Promotes migration and morphological changes of microglia
and astrocytes via MARCKS protein

Kanekiyo et al., 2007
Lee et al., 2012

DPI ↑ Levels in AD patients and Tg2576 mouse (in astrocytes and
microglia within senile plaques)

Mohri et al., 2007

PGT ↓ Levels in AD patient brain homogenates Choi et al., 2008

Parkinson PGD2 α-synuclein modulates arachidonic acid metabolism and
downstream PGD2/PGJ2 production

Castagnet et al., 2005; Golovko et al., 2006;
Golovko and Murphy, 2008

PGJ2 PGJ2-induced mouse model exhibits slow-onset PD-like
pathology
Optimal for testing diagnostic tools (such as PET) and
therapeutic interventions for neurons and microglia

Pierre et al., 2009; Shivers et al., 2014

L-PGDS Isoform changes in CSF of PD patients
Potential PD biomarker

Harrington et al., 2006

ALS PGJ2 15d-PGJ2 accumulates in spinal motor neurons of ALS patients Kondo et al., 2002; Zhang et al., 2010

DPI Blocking DP1 as a therapeutic strategy Di Giorgio et al., 2008; de Boer et al., 2014

Stroke PGJ2 ↑ Levels in the brains of rodent models of cardiac arrest and
stroke

Liu et al., 2011, 2013a,b; Shaik et al., 2014

TBI PGJ2 ↑ Levels in the brains of rodent models of TBI
PPARy ligands protective or deleterious?

Kunz et al., 2002; Hickey et al., 2007
Qi et al., 2010; Surh et al., 2011

Krabbe H-PGDS

DPI

KO of the H-PGDS or the DP1 receptor, or inhibiting H-PGDS
with HQL-79 in the twitcher mouse model is protective

Mohri et al., 2006; Bosetti, 2007; Palumbo and
Bosetti, 2013

TAU cleavage at Asp421 was identified as an early event in AD
tangle pathology (Gamblin et al., 2003; Rissman et al., 2004;
de Calignon et al., 2010). In summary, J2 prostaglandins mimic
many pathological processes observed in AD.

PARKINSON DISEASE (PD)
Up-regulation of PGD2 or J2 prostaglandins in PD patients has
not been addressed yet, but there is ample evidence linking PGD2,
the precursor of PGJ2, to PD. Changes in PGD2 levels occurring
in PD brains will lead to parallel changes in the highly reactive
cyclopentenone J2 prostaglandins because PGD2 is unstable and
is spontaneously metabolized to J2 prostaglandins. It was calcu-
lated that the half-life of PGD2 in the brain is 1.1 min (Suzuki
et al., 1986).

Significant changes in L-PGDS isoforms were detected in the
CSF of at least 20 idiopathic PD patients compared to 100 controls
(Harrington et al., 2006). These alterations reflected up/down
regulation of L-PGDS isoforms likely (a) to represent pathology

at the cellular level expected to impact prostaglandin produc-
tion, and (b) to correlate with disease symptoms (Harrington
et al., 2006). It was speculated that these altered isoforms could
be candidate diagnostic PD biomarkers and may have predictive
value (Harrington et al., 2006).

A number of studies suggest that α-synuclein plays a role
in brain fatty acid metabolism including arachidonic acid,
through modulation of ER-localized acyl-CoA synthetase activity
(Castagnet et al., 2005; Golovko et al., 2006). Acyl-CoA synthetase
is an enzyme that converts fatty acids to acyl-coA for subsequent
beta oxidation. In α-synuclein KO mice, exogenous addition of
wild-type mouse or human α-synuclein restored acyl-CoA syn-
thetase activity, while mutant (A30P, E46K, and A53T) forms of
α-synuclein did not (Golovko et al., 2006). In addition, the levels
of several prostaglandins in brains following a 30 s global ischemia
were compared in wild type vs. α-synuclein KO mice (Golovko
and Murphy, 2008). Among all prostaglandins assayed (E2, D2,
F2α, TxB2, and 6-ketoF1α) PGD2 showed the greatest increase
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(two-fold) in the α-synuclein KO mice relative to the wild type.
The levels of PGD2 in brains of α-synuclein KO mice reached
∼35 ng/g following the 30 s global ischemia. Under normal phys-
iological conditions, α-synuclein ablation had no effect. Together
these studies suggest that α-synuclein could play a role in brain
inflammatory responses through modulation of arachidonic acid
metabolism and downstream PGD2/PGJ2 production.

As far as we know, we established the first model of inflam-
mation in which the endogenous highly reactive product of
inflammation PGJ2, induces PD pathology convincingly (Pierre
et al., 2009). Microinfusion of PGJ2 into the brainstem and stria-
tum of adult FVB male mice led to a dose-dependent reduction
in the number of dopaminergic (TH+) neurons in the substan-
tia nigra pars compacta, with little damage to local GABAergic
interneurons, and to the appearance of Lewy-like bodies and
activated glial cells. PGJ2-treatment resulted in a PD-like phe-
notype exhibiting gait disturbance and impaired balance. More
recently we showed that this PGJ2-induced mouse model that
mimics in part chronic inflammation, exhibits slow-onset PD-like
pathology (Shivers et al., 2014). In this mouse model, microglia
activation was evaluated in vivo by PET with [11C](R)PK11195
(Banati, 2002) to provide a regional estimation of brain inflam-
mation. We also demonstrated that PACAP27, a peptide that
increases intracellular cAMP levels (Moody et al., 2011), reduced
dopaminergic neuronal loss and motor deficits induced by PGJ2,
without preventing microglia activation. The latter could be prob-
lematic in that persistent microglia activation can exert long-term
deleterious effects on neurons and behavior. In conclusion, this
PGJ2-induced mouse model is optimal for testing diagnostic tools
such as PET, which is a powerful technique to quantitatively assess
neuroinflammation in vivo (Stoessl, 2014), as well as therapies
designed to target the integrated signaling across neurons and
microglia, to fully benefit patients with PD.

AMYOTROPHIC LATERAL SCLEROSIS (ALS)
There is evidence supporting the involvement of J2
prostaglandins in ALS. As such, 15d-PGJ2 was shown to accumu-
late in spinal motor neurons of patients with amyotrophic lateral
sclerosis (ALS) (Kondo et al., 2002; Zhang et al., 2010). Moreover,
astrocytes from mice carrying the SOD1G93A mutation were
shown to be toxic to stem cell-derived human motor neurons
but not to interneurons (Di Giorgio et al., 2008). The astrocyte
induced neurotoxicity was mediated by up-regulation of PGD2
signaling, and was prevented by MK05524, an antagonist for the
PGD2 receptor DP1 (Di Giorgio et al., 2008). In a more recent
study, an in vivo genetic approach validated the importance of
this DP1-mediated mechanism for neuronal degeneration. As
such, genetic ablation of DP1 in SOD1G93A mice extended their
life span, decreased microglial activation, and reduced motor
neuron loss (de Boer et al., 2014). These results suggest that
blocking DP1 may be a therapeutic strategy in ALS (Di Giorgio
et al., 2008; de Boer et al., 2014).

STROKE
Stroke and silent brain infarcts are high risk factors for demen-
tia and neurodegenerative diseases such as AD (Vermeer et al.,
2003) and PD (Becker et al., 2010; Rodriguez-Grande et al., 2013).

The cyclooxygenase pathway was considered to be a valuable ther-
apeutic target for stroke, however while COX-2 inhibitors are
able to diminish injury in stroke models, they also produce an
unbalance in prostanoid synthesis that promotes damaging vas-
cular effects (Iadecola and Gorelick, 2005). For this reason, new
therapeutic strategies targeting the factors that mediate the dam-
age downstream from COX-2 may offer stroke patients powerful
new tools to ameliorate brain damage and improve their func-
tional outcome (Iadecola and Gorelick, 2005). Some of these
factors could be J2 prostaglandins, as their levels in the brain are
highly elevated in rodent models of cardiac arrest and stroke (Liu
et al., 2011, 2013a,c; Shaik et al., 2014). Due to their inhibitory
effects on the UPP, J2 prostaglandins could play an important role
in brain ischemia brought about by cardiac arrest or stroke, as
UPP impairment is highly relevant to these conditions (Caldeira
et al., 2014). Thus, therapeutic strategies targeting the deleterious
effects of J2 prostaglandins could offer great promise.

TRAUMATIC BRAIN INJURY (TBI)
TBI is another neurological condition associated with J2
prostaglandins. In rodents, TBI elevates J2 prostaglandin lev-
els in the brain to concentrations similar to those shown to
be neurotoxic in vitro (Kunz et al., 2002; Hickey et al., 2007).
TBI initiates an inflammatory cascade that leads to acute patho-
logic processes as well as long-term neuronal damage (Ziebell
and Morganti-Kossmann, 2010). The nuclear receptor PPARγ,
for which 15d-PGJ2 is an endogenous ligand, is considered a
major anti-inflammatory and neuroprotective target for treating
patients with TBI. However, PPARγ activation can also trigger
apoptosis (Qi et al., 2010). These opposing effects seem to be
related to the level of PPARγ agonists produced (Clay et al., 1999;
Na and Surh, 2003). Low PPARγ agonist levels exert neuroprotec-
tive and anti-inflammatory effects that include down-regulation
of inflammatory responses, reduction of oxidative stress, inhi-
bition of apoptosis, and promotion of neurogenesis, while high
levels induced apoptosis (Qi et al., 2010). The regulatory mech-
anisms and signaling cascades underlying the opposing PPARγ

effects require further elucidation (Qi et al., 2010).

KRABBE DISEASE
This disease is associated with demyelination, for which the
twitcher mouse is an authentic animal model (Duchen et al.,
1980; Kobayashi et al., 1980). In this mouse model, myelina-
tion proceeds normally up to post-natal day 30, when demyeli-
nation initiates due to oligodendrocyte apoptosis accompanied
by microglia activation and astroglyosis (Mohri et al., 2006).
Remarkably, a blockade of the PGD2 signaling cascade in the
twitcher mouse via knock-out of the PGD2 synthase H-PGDS
or the PGD2 receptor DP1, or treating these mice with the
H-PGDS inhibitor HQL-79 [4-benzhydryloxy-1-[3-(1H-tetrazol-
5-yl)-propyl]piperidine], suppressed astroglyosis, demyelination,
twitching and spasticity. These results support the notion that
PGD2 and perhaps its metabolites, are key to the pathological
demyelination occurring in the twitcher mouse, and the neu-
roprotective potential of manipulating the PGD2-signaling to
overcome demyelination in Krabbe disease (Mohri et al., 2006;
Bosetti, 2007).
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POTENTIAL J2 PROSTAGLANDIN THERAPEUTIC TARGETS
While inflammation can be beneficial, failure to adequately
control its abatement when the injurious agent is neutral-
ized, is increasingly believed to be one of the major causes of
chronic inflammation (Gilroy, 2010). The therapeutic potential
of the prostanoid pathway is supported by the clinical efficacy
of NSAIDs, although they present risky side effects as cur-
rent NSAIDs non-selectively inhibit the overall synthesis of all
prostaglandins (Table 3).

A more recent approach of diminishing prostaglandin-
induced neuroinflammation is to block the activity of the
enzyme monoacylglycerol lipase (MAGL) (Table 3). MAGL,
which hydrolyzes endocannabinoids, can also regulate arachi-
donic acid release in the brain but not in the gastrointestinal
tract, that culminates in the generation of neuroinflammatory
prostaglandins (Nomura et al., 2011; Piro et al., 2012). A novel
MAGL selective and irreversible inhibitor (JZL184, which
is 4-nitrophenyl-4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]
piperidine-1-carboxylate) has shown promising results for
blocking the neuroinflammation in the brain associated with
PD and other neurodegenerative disorders (Legg, 2011; Nomura
et al., 2011).

Additional specific targets in the prostaglandin pathways,
such as prostaglandin synthases, prostaglandin transporters,
and prostaglandin receptors have also emerged as drug targets
(Table 3). For example, recently a highly selective competitive
inhibitor of the prostaglandin transporter PGT was found to pro-
long PGE2 half-life, in vitro and in vivo (Chi et al., 2011). It is
expected that further delineation of the prostaglandin pathway

will yield novel beneficial therapeutics in the years to come
(Smyth et al., 2009).

As discussed throughout this review, further knowledge on
the neurotoxic mechanisms mediated by J2 prostaglandins and
their contribution to the progression and longevity/resolution
of the inflammatory response are needed to develop novel and
more effective neuroprotective therapeutic strategies to attenuate
inflammation. J2 prostaglandins represent attractive therapeu-
tic targets because of their important roles in the development
and resolution of inflammation. In particular, J2 prostaglandin-
dependent therapeutics should target mechanisms of action that
include receptor activation and Michael addition.

RECEPTOR MODULATION (TABLE 3)
It is critical to fully understand the dual roles of these
prostaglandins as pro- and anti-inflammatory agents. The oppos-
ing effects of PGD2/J2 prostaglandins on inflammation are
reflected by the responses induced by activation of the DP1
or DP2 receptors, for which a range of antagonists are under-
going clinical evaluation (Pettipher et al., 2007; Sandig et al.,
2007; Ricciotti and FitzGerald, 2011). Some of these potential
drugs can reach the cerebrospinal fluid upon oral administra-
tion (Pettipher et al., 2007). While DP1 agonists seem to alleviate
brain damage upon stroke (Ahmad et al., 2010), DP1 antag-
onists are being proposed to treat disorders such as ALS (de
Boer et al., 2014) and Krabbe disease (Mohri et al., 2006).
DP2 antagonists are highly relevant to treating allergies and
asthma (Norman, 2014). The effective anti-inflammatory prop-
erties of these drugs may be relevant to blocking inflammation

Table 3 | Potential J2 prostaglandin therapeutic targets.

Target Drugs Effects References

Cycloxygenases
(COXs)

NSAIDS COX inhibitors. Prevent/diminish neuroinflammation. Inhibit
synthesis of all PGs. Exhibit cardiovascular, gastrointestinal
and other side effects.

Iadecola and Gorelick, 2005; Rainsford, 2007;
Ng and Chan, 2010

Monoacyl-glycerol
lipase (MAGL)

JZL184 MAGL selective and irreversible inhibitor.
Prevents/diminishes neuroinflammation. Inhibits synthesis
of all PGs in the brain. No detectable gastrointestinal side
effects.

Nomura et al., 2011; Legg, 2011

H-PGDS HQL-79 H-PGDS inhibitor. Prevents demyelination, astroglyosis and
spasticity in the twitcher mouse. Potential for treating
Krabbe disease.

Mohri et al., 2006; Bosetti, 2007

DP1 Agonists Effective against stroke. Ahmad et al., 2010

Antagonists Treat ALS, Krabbe disease and pain. Mohri et al., 2006; Di Giorgio et al., 2008;
Jones et al., 2009; de Boer et al., 2014;

DP2 Antagonists Effective anti-inflammatory drugs (for asthma and allergies).
Potential for treating neurodegenerative diseases and pain.

Jones et al., 2009; Norman, 2014

PPARy Agonists Effective against stroke, TBI, spinal cord injury, multiple
sclerosis, AD, PD.

Combs et al., 2000; Diab et al., 2002; Kapadia
et al., 2008; Nolan et al., 2013

Prostaglandin TA
Transporter (PGT)

T26A Highly selective PGT competitive inhibitor. Prolongs
prostaglandin half-life.

Chi et al., 2011

Michael addition

PAPCAP27 Increases intracellular cAMP. Protective for stroke, PD, HD
and TBI. Prevents PGJ2-induced neurodamage in vitro and
in vivo (PD model).

Reglodi et al., 2004; Metcalfe et al., 2012;
Shivers et al., 2014

Lipocardium Negatively charged liposomes to deliver PGA2 to activated
arterial wall lining cells to reduce atherosclerosis.

Homem de Bittencourt et al., 2007
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associated with neurodegeneration and pain (Jones et al.,
2009).

PPARγ agonists seem to protect neurons not only following
acute CNS injury including stroke, spinal cord injury and TBI
after which massive inflammation plays a detrimental role, but
also in neurodegenerative conditions including multiple sclero-
sis (Diab et al., 2002; Chaudhuri, 2013), AD (Combs et al., 2000)
and PD (Kapadia et al., 2008). While 15d-PGJ2 is thought to be
the endogenous ligand for PPARγ, the thiazolidinediones (TZDs)
are used as potent exogenous agonists exerting their neuroprotec-
tive effects via prevention of microglial activation, inflammatory
cytokine and chemokine expression, and promoting the anti-
oxidant mechanisms in the injured CNS (Kapadia et al., 2008).
More recent evidence suggests that the nuclear receptor (NR)
superfamily of transcription factors including Nuclear receptor-
related factor1 (Nurr1), PPARs, retinoic acid and glucocorticoid
receptors show promise as therapeutic targets for PD. Since they
are known to regulate an array of inflammatory mediators, it
is postulated that modulating Nurr1 expression or NR receptor
activation, including PPARs, via agonists would protect against
dopaminergic neuronal death induced by inflammation (Nolan
et al., 2013).

Overall, the effectiveness of J2 prostaglandin receptor ago-
nists/antagonists on the treatment of neurodegenerative condi-
tions needs to be carefully investigated as these receptors may
act sequentially to initiate and sustain disease states, and/or play
complementary roles. Potentially, a combination of these receptor
agonists/antagonists could prove to be a very promising thera-
peutic approach (Jones et al., 2009). Whether these drugs can
be applied to preventing chronic long-term neuroinflammation
remains to be explored.

MICHAEL ADDITION (TABLE 3)
The best characterized mechanism of action of J2 prostaglandins
is the covalent modification of proteins at cysteine residues
through Michael addition, which is attributed to their elec-
trophilic nature (Oeste and Perez-Sala, 2014). In this regard,
proteomic approaches used in the past few years have provided
much needed knowledge about the pharmacological actions and
signaling mechanisms of J2 prostaglandins (Oeste and Perez-
Sala, 2014). Detailed investigation of the protein targets directly
affected by these lipid mediators of inflammation, is critical
to the development of more specific and effective therapeutic
approached against the deleterious effects of neuroinflamma-
tion. Identification of these protein targets will provide important
clues on the pathways modulated by J2 prostaglandins and the
mechanisms underlying their beneficial or deleterious effects.

As we discussed above, two of these pathways that are
affected by J2 prostaglandins and that are highly relevant to
neurodegeneration are the UPP and mitochondrial function.
We recently investigated in vitro (Metcalfe et al., 2012) and
in vivo (Shivers et al., 2014) a potential therapeutic approach
to overcome J2 prostaglandin neurotoxicity, based on elevating
intracellular cAMP with PACAP27 (pituitary adenylate cyclase-
activating polypeptide). PACAP27 is a potent neuroprotective
lipophilic peptide in different models of neuronal injury such
as stroke, PD, HD, TBI, retinal degeneration, and others, where

it exhibits anti-apoptotic, anti-inflammatory and anti-oxidant
effects (Reglodi et al., 2004; Atlasz et al., 2010; Ohtaki et al.,
2010; Dejda et al., 2011; Mao et al., 2012). While we confirmed
the anti-apoptotic effects of PACAP27 in our studies, it was
clear that PACAP27 as tested and by itself was not sufficient to
overcome all of the neurodamaging effects of PGJ2 (Metcalfe
et al., 2012; Shivers et al., 2014). Ideal therapeutic interventions
against J2 prostaglandins may require a combinatorial approach
to effectively prevent the pleiotropic effects of these highly reactive
endogenous mediators of inflammation.

In contrast, negatively charged cyclopentenone prostaglandin-
based liposomes (LipoCardium) were developed to specifically
deliver prostaglandins, in this case PGA2, to injured arterial wall
cells of atherosclerotic mice (Homem de Bittencourt et al., 2007).
Anti-inflammatory, anti-proliferative, anti-cholesterogenic and
cytoprotective effects were obtained with LipoCardium. This
strategy opens up new avenues for specific prostaglandin delivery
to humans, including a chronic slow delivery.

In conclusion, much remains to be discovered about the
biology of the J2 prostaglandins, to prevent their neurotoxic
effects and possibly “trick” ongoing inflammation into resolution.
Further investigations may provide important clues “to bring us
into a new era of inflammation research, which, if approached
with creativity and persistence, might provide numerous ben-
efits for those suffering from inflammation-mediated diseases”
(Gilroy, 2010).
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