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Fluid therapy is extensively used to treat traumatized patients as well as patients during

surgery. The fluid therapy process is complex due to interpatient variability in response

to therapy as well as other complicating factors such as comorbidities and general

anesthesia. These complexities can result in under- or over-resuscitation. Given the

complexity of the fluid management process as well as the increased capabilities in

hemodynamic monitoring, closed-loop fluid management can reduce the workload of the

overworked clinician while ensuring specific constraints on hemodynamic endpoints are

met with higher accuracy. The goal of this paper is to provide an overview of closed-loop

control systems for fluid management and highlight several key steps in transitioning

such a technology from bench to the bedside.
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INTRODUCTION

Fluid therapy is used extensively to treat traumatized patients as well as patients during surgery
(1, 2). Fluid therapy is a challenging process involving the consideration of interpatient and
intrapatient variability in response to therapy as well as other factors such as comorbidities and
general anesthesia. These complexities can result in under- or over-resuscitation (3–5). Given the
complexity of the fluid management process, as well as the increased capabilities in hemodynamic
monitoring, closed-loop fluid management can reduce the workload of the overworked clinician
while ensuring specific constraints on hemodynamic endpoints are met with higher accuracy.

One industry that has witnessed a wide adoption of active (i.e., closed-loop) control technologies
is the aerospace industry, where closed-loop control technologies (the autopilot) have been used in
various aircrafts over the past several decades. More recently, advances in autonomous driving
holds the promise of using closed-loop technologies for the driverless operation of vehicles in the
near future. Although closed-loop control technologies have been used in various industries for
many years, it is not until recently that active control technology has transitioned into medical
applications with the majority of applications focusing on pre-clinical or research settings.

WHAT IS A CLOSED-LOOP CONTROL SYSTEM?

In many systems related problems, a specific variable of interest (the controlled variable) needs to
be maintained at a desired value. For example, in the classical inverted pendulum control problem
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consisting of a pendulum and a moving cart, the goal is to
maintain the pendulum in a vertical position by moving the
cart horizontally. Every closed-loop control system has three
components; namely, (i) a sensor, that measures a relevant
variable of interest (e.g., the angle of the pendulum relative to
the vertical position); (ii) an actuator (e.g., electric motor on
the cart), that changes the state of the system in order to drive
the controlled variable of interest to a desired value; and (iii)
a controller or processor, that uses the sensor measurements in
order to compute an appropriate action that drives the actuator
to execute the desired control action. The controller can be
considered the central processing unit of the system (the “brain”)
and, in general, is implemented using proprietary software on
a computing device. The general architecture of a closed-loop
control system is shown in Figure 1.

Using this architecture, it is straightforward to apply this
process to a clinical problem such as fluid management.
In this case, the goal would be to maintain the controlled
variable of interest at a desired value (e.g., maintaining the
cardiac index at 3 L/min/m2). In order to design a feedback
control system, we need a sensor (e.g., a hemodynamic
monitor and its associated sensor to measure cardiac output)
and an actuator (e.g., an infusion pump to administer
IV fluids) to regulate the trajectory of the controlled
variable of interest over time. The control system can be
implemented on a computing device such as a computer
or a small and limited-resource computing device such as
a microcontroller.

An important property of a closed-loop system is system
stability. Specifically, closed-loop system stability ensures that
system state variables do not significantly deviate from
their desired set point values over time. For example, if a
developed control system for controlling an inverted pendulum
is appropriately designed and the closed-loop system is
stable, then we are guaranteed that, for all initial angular
positions and velocities relative to the vertical plane, the
controlled system will maintain the pendulum at the desired
90-degree angle with respect to the horizontal position of
the cart.

Closed-loop stability is an extremely important property
for a controlled system. Instability may result in actuator
saturation (e.g., fluid infusion amplitudes and rates attaining their
maximum limits) as well as oscillatory system behavior or, in
the worst case, divergent trajectories of the controlled variables.
Lyapunov stability theory provides a powerful framework
for guaranteeing system stability. Using this framework, an
“energy-like” Lyapunov function is constructed and shown
that its rate of change with respect to time is negative
reflecting the fact that the “energy” of the closed-loop (i.e.,
controlled) system is decreasing over time (6). An intuitive
example of a stable system is a marble placed in a bowl,
where, no matter where you release the marble from within
the bowl, the marble converges to the point of minimum
potential (i.e., energy) corresponding to the bottom point
of the bowl (i.e., equilibrium point) after dissipating its
kinetic energy.

CLOSED-LOOP CONTROL IN
BIOMEDICINE

Although closed-loop systems in biomedicine, including closed-
loop drug delivery systems (7), have been designed and
investigated as part of research initiatives, a renewed interest
in active control has resulted in the development of a number
of commercial medical products based on closed-loop control
technologies. One notable example is the artificial pancreas,
where continuous blood glucose measurements are used to
automatically guide the administration of insulin using a
computer-controlled insulin pump (8).

The renewed interest in closed-loop technologies for
improving performance in clinical applications is due to multiple
factors. Until recently, control system designs in biomedicine
have been largely based on heuristics (i.e., trial-and-error-
based methods). This is due to the complexities inherent in
system physiology, wherein mathematical models capturing
complex physiological mechanisms of action are not readily
developed. Although there has been considerable progress in
understanding the pharmacokinetics and pharmacodynamics
of drug distribution and drug effect using compartmental
models in pharmacology (9), the distribution of fluids using
compartmental and volume kinetic models (10–12), and lumped
parameter models of blood volume response to fluid infusion
(13), such models are approximations to the actual patient
physiology. The gap between system modeling and the actual
system physiology has been the main limiting factor in the
use of rigorous control design frameworks that have been
widely used in, for example, the aerospace industry. This is due
to the fact that, unlike human or animal physiology, aircraft
system dynamics are governed by the well-established laws of
aerodynamics and mechanics.

Compartmental models, which are characterized by
conservation laws (e.g., conservation of mass, energy, and
fluid) involve several simplifying assumptions. One important
assumption is that the drug or fluid distribution in the body
can be approximated by using only a few compartments. A
compartment is a macroscopic subsystem involving kinetic
homogeneity, where it is assumed that any material entering the
compartment is instantaneously mixed with the material in that
compartment. Compartmental models have been successfully
used to provide approximate models for capturing the behavior
of drug and fluid distribution in the body. In addition, such
models provide an opportunity for the use ofmodel-based control
design approaches that use mathematically rigorous closed-loop
control techniques to solve specific problems related to drug and
fluid distribution management.

Although compartmental models provide the opportunity
to leverage model-based control designs, a critical limitation
of this design approach is that the patient-specific parameters
that define these models are vaguely known. More specifically,
compartmental models capture the approximate physiological
structure of the biomedical system being modeled, whereas
the model parameter values (e.g., transfer coefficients between
different compartments) are uncertain and vary from patient to
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FIGURE 1 | General architecture of a closed-loop control system.

patient; these model parameter values are critical in being able to
design effective closed-loop, model-based control systems.

Given the aforementioned complexities associated with
model-based controller designs for biomedical systems, heuristic
approaches have been the dominant control designmethods used
for controlling these systems. In particular, specific controller
design parameters (e.g., the gains of a proportional-integral-
derivative controller, also known as a PID controller) are “tuned”
based on experimental data (14). In this approach, the system
physiology is effectively modeled as a “black box,” and the control
system parameters are designed (i.e., tuned) by trial and error.

An inherent assumption of heuristic control designmethods is
that the available data obtained through animal studies (14, 15) or
patient population data (16–18) is representative of all patients.
This approach may be useful when dealing with a problem
where a limited understanding of the dynamics or the process
to be controlled exists. However, it is predicated on the overly
restrictive assumption that all patients aremodeled as an “average
patient.” Creating an average patient model based on statistical
data or limited experimental data has the potential to negatively
impact the performance and stability of the closed-loop system
when applied to an actual patient.

There have been a number of recent advances that
have created an optimal platform for transitioning closed-
loop control technologies into a clinical setting. From a
theoretical perspective, recent developments in control theory,
and specifically, robust and adaptive control, have allowed for
a rigorous control system design of uncertain systems, wherein
only an approximate system model is used to capture the system
physiology and the system parameter values (which are unique
to each individual patient) are assumed to lie between upper
and lower bounds or are unknown and estimated in real-time.
Within this context, compartmental models that capture general
fluid or drug distribution can be used to guide the control system
design. Examples include using adaptive control technologies to
deliver general anesthesia (19, 20) and, more recently, closed-
loop control for fluid resuscitation (21).

A second factor that has facilitated the development of
advanced closed-loop control technologies is the improved
computational power and miniaturization of computer chips.
Real-time computation of complex control laws requiring the

solution of multiple ordinary differential equations and matrix
computations in real-time [e.g., for closed-loop control of fluid
resuscitation (21)] on a small computing device was not possible
until recently.

Finally, the development of mechanistic models linking the
dynamics between biological and physiological laws leading to
improved understanding of system physiology (22) and the new
paradigm of in silico testing and hardware-in-the-loop simulations
have accelerated the development of closed-loop system design
in biomedicine (23). As opposed to testing the design of the
control system on animals, which is costly and labor intensive,
a mathematical model of the patient can be simulated and the
performance of the controller can be tested using in silico testing.
Specifically, there has been recent interest by the FDA to further
leverage the promise of in silicomodels in closed-loop controlled
device development (24, 25). The fidelity of in silicomodels have
progressed to a level where the FDA recently approved the use of
in silico testing as a replacement of animal studies prior to testing
of an artificial pancreas in humans (26).

CLOSED-LOOP CONTROL FOR FLUID
RESUSCITATION

Closed-loop control for fluid resuscitation has been investigated
by several research groups. Specifically, closed-loop (i.e., fully
automated) and semi-automated fluid management for burn
patients has been extensively studied by researchers at the US
Army Institute of Surgical Research, San Antonio, TX (27, 28).
The semi-automated implementation of this work was later
commercialized as part of a clinical decision support tool for fluid
management of burn patients. The developed framework, which
used urine output rates as the controlled variable of interest,
employed a heuristics-based non-linear relationship between
the urine output rate and the fluid infusion rate to guide the
resuscitation process. A clinical study involving 39 acute burn
patients with >20% total body surface area, showed that the
developed clinical decision support system reduced the total
amount of fluid administered. In addition, a larger number of
patients resuscitated by the clinical decision support system met
the hourly urine output goals set by the study team.
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The authors in (14) investigated the use of their closed-
loop control system to guide fluid resuscitation for burn shock
in sheep. Specifically, the performance of a PID controller
was compared with manual resuscitation when using the urine
output rate as the feedback control signal. It was shown that
the PID controller was able to produce urine output rates
within the desired range with less variation as compared to
manual resuscitation. Various controllers based on heuristic
design methods such as PID, fuzzy logic, and decision tables
have been tested and reviewed elsewhere (29) including studies
involving the co-administration of vasopressor and fluids using a
closed-loop architecture (30–32).

Another series of recent studies have investigated the use of
closed-loop control for goal directed fluid therapy. Specifically,
hemodynamic data obtained from patients has been used to
develop an algorithm to administer a bolus of fluid (33). The
performance of the approach in hemorrhaged pigs was evaluated
by comparing the closed-loop system’s response to volume
depletion with manual fluid resuscitation by anesthesiologists.
The study demonstrated that the closed-loop fluid administration
system responded appropriately and produced a higher cardiac
index as compared to the group which received manual fluid
resuscitation by anesthesiologists. The same algorithm was later
used as part of a pilot study in humans (18).

While the majority of currently designed closed-loop systems
use heuristic approaches to determine fluid administration rates
and volumes, a notable exception has been the employment of an
adaptive control system predicated on a compartmental model
to resuscitate dogs subject to absolute and relative hypovolemia
(21). The study involved a total of nine experiments on five
dogs of different weights experiencing controlled or uncontrolled
hemorrhage as well as cases involving relative and absolute
hypovolemia. In this pilot study, it was shown that the adaptive
control system could successfully drive stroke volume variation
to a predetermined value set by the clinician.

In a recent work, authors in (34) investigate a model-based
controller design predicated on a lumped parameter model
of blood volume response involving three parameters (13).
Specifically, this closed-loop control framework involves a two-
step process: a “calibration” phase involving administering an
initial fluid bolus and observing the patient’s response followed
by using a model reference adaptive control architecture to
guide fluid infusion. However, as discussed by the authors,
the performance of this framework beyond in silico tests
for 30 randomly generated patients was not investigated.

It is also unclear whether the proposed architecture is
robust to unmodeled dynamics not captured by the lumped
parameter model.

DISCUSSION

Given the complexity of individual patient physiology under
various clinical scenarios and issues associated with under- or
over-resuscitation (3–5), designing a closed-loop control system
for fluid resuscitation needs to involve a collaborative team effort
between control engineers and clinicians. The control system
design process needs to employ rigorous control engineering
frameworks to address important issues such as system
performance, stability, and robustness to modeling uncertainly
as well as disturbances (e.g., how the system will respond to rapid
changes in patient physiology). Leveraging decades of knowledge
gained from physiological modeling, including compartmental
models and volume kinetics (10–12), holds a great promise
for developing feedback control technologies that will permit a
transition from the bench to the bedside.

Clinical insight is critical in designing closed-loop systems for
fluid management. The controlled system needs to administer
fluids when appropriate, and needs to stop fluid administration
when key physiological endpoints are maintained. In the case
where the anticipated response to fluid administration is not
achieved by the closed-loop system, the system needs to alert the
clinician to take over the fluid administration (i.e., control) in
much the same way wherein a well-designed autopilot alerts the
pilot to take over control of an aircraft.

Prior to transitioning a closed-loop control system for
fluid management to a clinical setting, such system needs
to be comprehensively tested. This will involve a series of
tests ranging from in silico testing and hardware-in-the-loop
simulation to pre-clinical and clinical testing. In addition, such
tests need to assess the system performance in complex clinical
scenarios to ensure safety and effectiveness. The clinical and
workflow impact of using a closed-loop control system for
fluid management in a clinical setting needs to be investigated
in future studies.
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